Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Catalysts

Articles 1 - 2 of 2

Full-Text Articles in Biochemical and Biomolecular Engineering

The Effects Of Ceria Loading On Three-Way Catalysts For Passive Scr Operation, Calvin R. Thomas, Josh A. Pihl, Vitaly Y. Prikhodko, Michelle K. Kidder, Jochen A. Lauterbach, Todd J. Toops Aug 2021

The Effects Of Ceria Loading On Three-Way Catalysts For Passive Scr Operation, Calvin R. Thomas, Josh A. Pihl, Vitaly Y. Prikhodko, Michelle K. Kidder, Jochen A. Lauterbach, Todd J. Toops

Faculty Publications

Passive SCR systems, which employ both a three-way catalyst and SCR catalyst, are effective for the reduction of nitrogen oxide (NOx) emissions from lean burn gasoline engines. However, questions remain regarding the effect of three-way catalyst formulations on their performance in these systems. Here, Pd/CeOx/Al2O3 catalysts with variable CeOx loading were synthesized, characterized, and evaluated to determine the effects of CeOx on catalyst performance. While a small amount of ceria was beneficial for promoting essential reactions, excess ceria was detrimental due to the increase in oxygen storage capacity. Additionally, insights into potential reaction pathways for NH3 production were determined.


The Effects Of Ceria Loading On Three-Way Catalysts For Passive Scr Operation, Calvin R. Thomas, Josh A. Pihl, Vitaly Y. Prikhodko, Michelle K. Kidder, Jochen A. Lauterbach, Todd J. Toops Aug 2021

The Effects Of Ceria Loading On Three-Way Catalysts For Passive Scr Operation, Calvin R. Thomas, Josh A. Pihl, Vitaly Y. Prikhodko, Michelle K. Kidder, Jochen A. Lauterbach, Todd J. Toops

Faculty Publications

Passive SCR systems, which employ both a three-way catalyst and SCR catalyst, are effective for the reduction of nitrogen oxide (NOx) emissions from lean burn gasoline engines. However, questions remain regarding the effect of three-way catalyst formulations on their performance in these systems. Here, Pd/CeOx/Al2O3 catalysts with variable CeOx loading were synthesized, characterized, and evaluated to determine the effects of CeOx on catalyst performance. While a small amount of ceria was beneficial for promoting essential reactions, excess ceria was detrimental due to the increase in oxygen storage capacity. Additionally, insights into potential reaction pathways for NH3 production were determined.