Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemical and Biomolecular Engineering

Real-Time Monitoring Of Cell Death Progress Using Capacitance Spectroscopy, Suyang Wu Dec 2021

Real-Time Monitoring Of Cell Death Progress Using Capacitance Spectroscopy, Suyang Wu

Electronic Theses and Dissertations

Biologics, including the monoclonal antibody (mAb), has experienced rapid development in the last decade. However, the price of biologics is often prohibitively high because of the low process efficiency. Delaying the inevitable cell death improves the productivity of upstream bioprocessing, whose success relies on monitoring the cell death onset that indicates the timing for preventive actions.

This study proposes to develop a real-time monitoring model that quantifies the dying cell percentage in lab-scale bioreactors using capacitance spectroscopy. The capacitance spectroscopy contains cell death-related information due to various physical properties changes during the cell death process, e.g., cytoplasmic conductivity change. The …


Mapping Three Dimensional Interactions Between Biomolecules And Electric Fields., Joseph Patrick Brian P.E. May 2021

Mapping Three Dimensional Interactions Between Biomolecules And Electric Fields., Joseph Patrick Brian P.E.

Electronic Theses and Dissertations

Electroporation is a technique that induces the formation of open pores in cell membranes by the application of an electric field. Electroporation is widely practiced in research and clinical work for transfection of genetic sequences and drug molecule transport through the membrane barrier. However, a full theoretical explanation of the molecular mechanisms and thermodynamics responsible for pore formation, structure, and longevity does not yet exist. Advances in molecular dynamics simulations have enabled theoretical studies of electroporation with previously unobtainable fidelity spanning biologically relevant timescales. All-atom simulations utilizing the recently developed method of computational electrophysiology demonstrate that pore size correlates to …