Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Undergraduate Honors Theses

Theses/Dissertations

Discipline
Keyword
Publication Year

Articles 1 - 17 of 17

Full-Text Articles in Biochemical and Biomolecular Engineering

Integrating Galectin-3 Into A Computational Model Of Cardiac Fibrosis Progression, Adam Pieratt May 2024

Integrating Galectin-3 Into A Computational Model Of Cardiac Fibrosis Progression, Adam Pieratt

Chemical Engineering Undergraduate Honors Theses

Cardiac fibrosis, a large contributor to heart failure, is the excessive accumulation of extracellular matrix in response to stress or injury. There are no approved treatments for cardiac fibrosis, and targeting specific species involved creates complex problems for drug development, so a computational model of the cardiac fibroblast signaling network can be used to observe the interactions involved in the progression of cardiac fibrosis. In this paper, a new protein called galectin-3 is integrated into this existing model, and connections are established to expand the coverage of the network. The additions are described, simulated using Netflux biological system simulation software, …


Comparing Firocoxib And Meloxicam In The Application Of Microneedle Patch For Transdermal Drug Delivery, Ruohan Li May 2023

Comparing Firocoxib And Meloxicam In The Application Of Microneedle Patch For Transdermal Drug Delivery, Ruohan Li

Chemical Engineering Undergraduate Honors Theses

This thesis compares the performance of meloxicam and firocoxib in the aspects of its physical characteristic, chemical compositions, and in-vitro performances for transdermal pain management microneedle patches on farm animals. The microneedle patches are composed of polyvinyl alcohol (PVA), type I collagen (COL), and chitosan (CHI) as base material that carries NSAIDs to achieve therapeutic purposes. Scanning electron microscopy (SEM) was utilized to observe the morphological and physical characteristics of the microneedle patches. Both meloxicam and firocoxib microneedle patches were successfully prepared using the methodology, with organized microneedle distribution and sizing. And Fourier transform infrared spectroscopy (FTIR) confirmed the chemical …


A Comparison Of Optical Measurement Methods For The Growth Of S. Cerevisiae, Jackson Black May 2023

A Comparison Of Optical Measurement Methods For The Growth Of S. Cerevisiae, Jackson Black

Chemical Engineering Undergraduate Honors Theses

Genetic engineering of living organisms provides the opportunity to express and harvest different proteins from cell surfaces. Yeast (S. cerevisiae) is one such organism and is capable of being grown on an industrial scale. Cellular concentration is an important parameter to monitor while fermentation processes are underway, in order to control the environment inside the growth medium and maximize yields. Spectrophotometry is a conventional method for measuring concentration, but is limited by a narrow absorbance range, and the need for on-site periodic sampling. A continuous method of measurement, as provided by Bug Labs BE2100 non-invasive biomass monitor, would …


Characterizing And Quantifying Shear-Induced Hemolysis In A Hollow Fiber Membrane System, Siddhi Bhat May 2023

Characterizing And Quantifying Shear-Induced Hemolysis In A Hollow Fiber Membrane System, Siddhi Bhat

Chemical Engineering Undergraduate Honors Theses

Clinical studies have shown that patients undergoing renal replacement therapy are more susceptible to developing hemolysis, or the rupturing of red blood cells. Rapid hemolysis can cause symptoms such as anorexia, vomiting, and even death in severe cases. The aim of this study is to identify how shear stress within a hollow fiber membrane impacts the level of hemolysis that occurs. This allows for the optimization of the ultrafiltration membranes that are typically used for hemofiltration treatments. The variables being studied are the radii of hollow fibers, number of fibers, and volumetric flow rate of blood being circulated. Here, we …


Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle May 2022

Isolation And Production Of Tandem Collagen Binding Domain From Clostridial Collagenase Colg And Developments In C1q Reagent Production For Future Molecule Characterization Work, Stephanie Beitle

Chemical Engineering Undergraduate Honors Theses

This thesis covers a two part project: the production methods to create a double collagen binding domain molecule with a growth factor for wound healing applications and the development of a new in-house production method for isolating C1q from bovine blood. The wound healing molecule was created using transformation, sonication, and purification before being tested via electrophoresis SDS page and Western blots to confirm the molecule’s presence. The C1q in-house production method utilizes an ultrafiltration flow cell rather than dialysis at a critical point in the process, allowing for researchers to not only be able to use a single small …


Drug-Facilitated Sexual Assault At The University Of Arkansas, Barrett Weidman May 2022

Drug-Facilitated Sexual Assault At The University Of Arkansas, Barrett Weidman

Chemical Engineering Undergraduate Honors Theses

This work was written to fulfill two main purposes. First, to help survivors of Drug-Facilitated Sexual Assault (DFSA) process their experience by compiling the toxicological, pharmacological, and distribution of the three most used date-rape drugs. Second, to gauge the knowledge and interest of University of Arkansas students regarding drug impairments, sexual assault education, and bystander intervention training. A survey was conducted for the latter and revealed that 91.6% of students believe the University’s existing sexual assault prevention education and bystander intervention training have room for improvement. Also, 37.1% of students who have received this education report that the programming does …


Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell May 2021

Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell

Chemical Engineering Undergraduate Honors Theses

Emerging technologies in nanotechnology and biomedical sciences have led to an increase in biomedical implantable devices including cardiac pacemakers, artificial organs, drug pumps, and sensors. These devices require continuous stable and reliable power to operate, which creates the demand for the need to find a safe, reliable, and stable power source. A promising avenue for a power source for these devices is a miniaturized reverse electrodialysis (RED) biopower cell design that utilizes the salinity differences between bloodstreams that flow inside the human body. Initial results of the RED system demonstrate that higher gradient salinity differences between streams lead to a …


Solution To Exide Technologies Inbatec Inefficiency, Shixuan Hou, Reagan Gilker, Mary Fairley, Spencer Christian, Covenson Latouche May 2020

Solution To Exide Technologies Inbatec Inefficiency, Shixuan Hou, Reagan Gilker, Mary Fairley, Spencer Christian, Covenson Latouche

Chemical Engineering Undergraduate Honors Theses

The inefficiency of the battery charging time in Inbatec Units 1 and 2 in the Exide Technologies Fort Smith was initially investigated by a student team in Fall 2019, and the investigation was continued into Spring 2020. The Exide Technologies facility in Fort Smith, Arkansas utilizes 13 Inbatec units to charge the lead-acid batteries. The Inbatec systems circulate the sulfuric acid solution through a cooling tower to maintain to optimal charging temperature. Previous analysis of the charging process for Inbatec Units 1 and 2 show the cooling tower have the capacity to quickly remove the excess heat in the sulfuric …


Solution To Exide Technologies Inbatec Inefficiency, Spencer Christian, Shixuan Hou, Mary Fairley, Reagan Gilker, Covenson Latouche May 2020

Solution To Exide Technologies Inbatec Inefficiency, Spencer Christian, Shixuan Hou, Mary Fairley, Reagan Gilker, Covenson Latouche

Chemical Engineering Undergraduate Honors Theses

The inefficiency of the battery charging time in Inbatec Units 1 and 2 in the Exide Technologies Fort Smith was initially investigated by a student team in Fall 2019, and the investigation was continued into Spring 2020. The Exide Technologies facility in Fort Smith, Arkansas utilizes 13 Inbatec units to charge the lead-acid batteries. The Inbatec systems circulate the sulfuric acid solution through a cooling tower to maintain to optimal charging temperature. Previous analysis of the charging process for Inbatec Units 1 and 2 show the cooling tower have the capacity to quickly remove the excess heat in the sulfuric …


The Synthesis, Purification, And Characterization Of The P3 Peptoid, Myles Joyce May 2019

The Synthesis, Purification, And Characterization Of The P3 Peptoid, Myles Joyce

Chemical Engineering Undergraduate Honors Theses

The relatively young field of nano-systems has vast applications over various different fields. Peptoids (peptide analogues) and their uses are consistently investigated components of these nano-studies. A particularly interesting group of peptoids are able to self-assemble into secondary structures under the right conditions. The P3 peptoid is able to form microspheres if properly synthesized and purified. Microspheres are frequently studied due to their low surface area to volume ratios. This unique aspect of microspheres makes them an excellent candidate for drug delivery systems; however, these systems must also be robust so that the desired compound can be encapsulated within the …


Removal Of Carbamazepine From Drinking Water, Paola Marrero-Rivera, Adam Johnson, Jordan Alex Gadberry, Juan Rodriguez, Thomas Krumpolc, Zach Wiese May 2018

Removal Of Carbamazepine From Drinking Water, Paola Marrero-Rivera, Adam Johnson, Jordan Alex Gadberry, Juan Rodriguez, Thomas Krumpolc, Zach Wiese

Chemical Engineering Undergraduate Honors Theses

Due to the increasing prevalence of prescription medication over the past few decades, pharmaceuticals have accumulated in various water sources. This has become a public health concern because many pharmaceuticals have limited research on the effects of chronic low-level exposure.One pharmaceutical of interest that has been detected in water sources is carbamazepine. Carbamazepine (CBZ) is a common pharmaceutical prescribed for the treatment of seizure disorders, neuropathic pain, and various psychological disorders. It’s mechanism of action is “sodium channel blocking,” which is the impairment of conduction of sodium ions in sodium channels. This, in effect, reduces nervous-system conductivity in key areas …


Wafer Enhanced Electrodeionization For Conversion Of Co2 Into Bicarbonate Feed For Algae Cultured Photobioreactors, Kayvan Afrasiabi May 2018

Wafer Enhanced Electrodeionization For Conversion Of Co2 Into Bicarbonate Feed For Algae Cultured Photobioreactors, Kayvan Afrasiabi

Chemical Engineering Undergraduate Honors Theses

The world has acknowledged climate change as a global crisis that demands considerable attention, with one of the largest culprit being carbon emissions from industrial processing and power generation. While reduction in carbon emissions is the principal action towards mitigating the effects of climate change, scientists and engineers have given increased attention to alternative sources of energy as well as methods of carbon sequestration to coax traditional manufactory and industry into environmentally friendly and sustainable practices. One technology of this nature is the use of wafer-enhanced electrodeionization (WE-EDI) membranes to convert gaseous carbon dioxide (CO2) from industrial flue …


Cross-Linking Amyloid Forming Proteins For Improved Understanding Of Early Aggregation, Gram Booth May 2018

Cross-Linking Amyloid Forming Proteins For Improved Understanding Of Early Aggregation, Gram Booth

Chemical Engineering Undergraduate Honors Theses

Alzheimer’s disease is the only disease in the ten leading causes of death in the United states that cannot be slowed, prevented, or cured. Alzheimer’s dementia and type II diabetes are the top two diseases caused by improper protein folding, aggregation, and deposition of fibrillar plaques in tissues. These plaques, originally thought to be the cause of these diseases, have been discovered to be mostly benign and representative of the later stages of the disease. The smaller, more soluble oligomeric aggregates are responsible for the death of pancreatic and neural cells. Many oligomeric species are unstable and exist only for …


Targeted Drug Delivery Using Peptoid Based Nanospheres, Kaylee J. Smith May 2016

Targeted Drug Delivery Using Peptoid Based Nanospheres, Kaylee J. Smith

Chemical Engineering Undergraduate Honors Theses

While medicine has improved greatly in the last couple of decades, there are negative side effects that accompany many drugs. Undesirable side effects could be greatly reduced if non-systemic drug delivery systems were used because the medicine would harm diseased cells at a much higher rate than it does healthy cells. One possible non-systemic drug delivery system is peptoid nanospheres. These nanospheres will then be linked to another peptoid that is engineered to attach almost exclusively to diseased cells.

This research project is focused on designing peptoids that will form nanospheres in solution. Four specific peptoids were synthesized and tested …


Development Of A Simple Handheld Biosensor For Waterborne Pathogens, Bryce C. Jones May 2016

Development Of A Simple Handheld Biosensor For Waterborne Pathogens, Bryce C. Jones

Chemical Engineering Undergraduate Honors Theses

Current methods of detecting waterborne pathogens involve testing strips which take 24-48 hours to yield results, or require expensive equipment in order to function. In minimalist environments, these two technologies are not always applicable to test water quality. With the emergence of a new method of PCR, named LAMP PCR, it is possible to quickly and accurately detect pathogen DNA in a water sample. In order to scale this technique into a simple device, the aspects of the reaction must be accommodated, and a visual detection method chosen. A handheld device which keeps the isothermal LAMP PCR stable for the …


Investigating The Modulation Of Aggregating Amyloid Beta 40, Marlee J. Motes May 2016

Investigating The Modulation Of Aggregating Amyloid Beta 40, Marlee J. Motes

Chemical Engineering Undergraduate Honors Theses

Amyloid beta protein has been linked to the formation of Alzheimer’s disease in patients.¹ Plaques form from amyloid beta fibrils. The formation of these plaques between neural connections in the brain are associated with Alzheimer’s disease.² The reduction of the formation of fibrils can be linked to utilizing protein mimics. The protocols that are used to reproduce the simulation of amyloid beta in the brain can be very important. Also, the structure of the protein mimic that is being used to inhibit the formation of fibrils can determine how the amyloid beta plaques are reduced.

The structure of sequence KLLFFLFFLLK …


A Peptoid-Based Targeted Drug Delivery System For The Treatment Of Metastatic Cancer, Hugh M. Purdy May 2014

A Peptoid-Based Targeted Drug Delivery System For The Treatment Of Metastatic Cancer, Hugh M. Purdy

Chemical Engineering Undergraduate Honors Theses

Development of a targeted drug delivery system is a critical step in the effort to improve cancer treatments. Such a system would greatly reduce the harmful side effects of chemotherapy by delivering toxic drugs directly to cancerous cells. Peptoids—synthetic compounds that can be easily produced from readily available amine monomers—have great potential for use in targeted drug delivery. This project aimed to develop peptoids that would bind to specific proteins expressed on the surface of cancer cells. These peptoids could be combined into a complex that would bind to the proteins with an even greater affinity than the individual compounds. …