Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Zengyi Shao

Selected Works

Metabolic engineering

Articles 1 - 2 of 2

Full-Text Articles in Biochemical and Biomolecular Engineering

Exploiting Issatchenkia Orientalis Sd108 For Succinic Acid Production, Han Xiao, Zengyi Shao, Yu Jiang, Sudhanshu Dole, Huimin Zhao Jan 2014

Exploiting Issatchenkia Orientalis Sd108 For Succinic Acid Production, Han Xiao, Zengyi Shao, Yu Jiang, Sudhanshu Dole, Huimin Zhao

Zengyi Shao

Background: Recent advances in synthesizing valuable chemicals such as organic acids from low-cost renewable biomass through microbial fermentation have attracted great attention. However, the toxicity of organic acids presents a key challenge to the development of an economically viable fermentation process. Therefore, a platform organism that not only produces organic acids but also tolerates the associated toxicity is highly desirable. Results: Here we report the discovery, characterization, and engineering of a yeast strain, Issatchenkia orientalis SD108, that is tolerant to low pH and high concentration of organic acids. This strain demonstrated a higher tolerance compared to I. orientalis ATCC 24210 …


Dna Assembler, An In Vivo Genetic Method For Rapid Construction Of Biochemical Pathways, Zengyi Shao, Hua Zhao, Huimin Zhao Jan 2009

Dna Assembler, An In Vivo Genetic Method For Rapid Construction Of Biochemical Pathways, Zengyi Shao, Hua Zhao, Huimin Zhao

Zengyi Shao

The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70 - 100%) …