Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemical and Biomolecular Engineering

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills Jan 2019

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the …


Polymer Interactions With Nucleic Acids Under Various Physiological Conditions, Matthew S. Obrzut Jan 2015

Polymer Interactions With Nucleic Acids Under Various Physiological Conditions, Matthew S. Obrzut

Williams Honors College, Honors Research Projects

The goal of this project is to improve our understanding of nucleic acid interactions with cationic polymers with the theory that the polymers could protect the nucleic acids from degradation caused by biological enzymes. We seek to understand what the limitations of the cationic polymers are which, in this case, is mainly polymer-DNA compatibility. This experiment utilized peptide-dextran hybrid polymers with differing functionalizations to condense anionic nucleic acids into nanometer-sized polyplexes. Techniques of dynamic light scattering and zeta-potential were utilized to determine the particle sizes and surface charges of polyplexes.

In this experiment, dextran with a molecular weight of 20 …