Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemical and Biomolecular Engineering

Production And Harvest Of Microalgae In Wastewater Raceways With Resource Recycling, Alexander Colin Roberts Dec 2015

Production And Harvest Of Microalgae In Wastewater Raceways With Resource Recycling, Alexander Colin Roberts

Master's Theses

Microalgae can be grown on municipal wastewater media to both treat the wastewater and produce feedstock for algae biofuel production. However the reliability of treatment must be demonstrated, as well as high areal algae productivity on recycled wastewater media and efficient sedimentation harvesting. This processes was studied at pilot scale in the present research.

A pilot facility was operated with nine CO2-supplemented raceway ponds, each with a 33-m2 surface area and a 0.3-m depth, continuously from March 6, 2013 through September 24, 2014. The ponds were operated as three sets of triplicates with two sets continuously fed …


Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj Oct 2015

Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj

FIU Electronic Theses and Dissertations

The contamination of the environment, accidental or intentional, in particular with chemical toxins such as industrial chemicals and chemical warfare agents has increased public fear. There is a critical requirement for the continuous detection of toxins present at very low levels in the environment. Indeed, some ultra-sensitive analytical techniques already exist, for example chromatography and mass spectroscopy, which are approved by the US Environmental Protection Agency for the detection of toxins. However, these techniques are limited to the detection of known toxins. Cellular expression of genomic and proteomic biomarkers in response to toxins allows monitoring of known as well as …


Application Of 3d Printing Technology In Porous Anode Fabrication For Enhanced Power Output Of Microbial Fuel Cells, Bin Bian Sep 2015

Application Of 3d Printing Technology In Porous Anode Fabrication For Enhanced Power Output Of Microbial Fuel Cells, Bin Bian

Electronic Thesis and Dissertation Repository

Microbial fuel cells (MFCs) are widely researched for application in wastewater treatment. However, the current anodes used in MFCs often suffer from high fabrication cost and uncontrollable pore sizes. In this thesis, three-dimensional printing technique was utilized to fabricate anodes with different micro pore sizes for MFCs. Copper coating and carbonization were applied to the printed polymer anodes to increase the conductivity and specific surface area. Voltages of MFCs with various anodes were measured as well as other electrochemical tests such as linear sweep voltammetry and electrochemical impedance spectroscopy. 3D copper porous anode produced higher maximum voltages and power densities …


Evaluation Of Filtration Performance Of A Rotating Belt Filter For Different Primary Wastewater Influents., Tulip Chakraborty Aug 2015

Evaluation Of Filtration Performance Of A Rotating Belt Filter For Different Primary Wastewater Influents., Tulip Chakraborty

Electronic Thesis and Dissertation Repository

Human activities around the world are responsible for production of enormous amount of wastewater, which needs to be treated quickly and effectively to avoid environmental concerns and other health implications. As an alternative to primary settlers in treating municipal wastewater, Salsnes, a subsidiary company of Trojan Technologies offers rotating belt filters (RBF) to treat the wastewater. A bench scale filtration unit of the RBF was developed to investigate the effect of varying water qualities from several wastewater plants in London, Ontario on the performance of the filter. The unit can achieve up to 80% reduction in total suspended solids (TSS), …


Process Control For Biological Nutrient Removal Processes In Fluidized Beds Treating Low Carbon To Nitrogen Municipal Wastewater, Joseph Donohue Jul 2015

Process Control For Biological Nutrient Removal Processes In Fluidized Beds Treating Low Carbon To Nitrogen Municipal Wastewater, Joseph Donohue

Electronic Thesis and Dissertation Repository

Conventional wastewater treatment techniques - utilizing microorganisms to remove organics and nutrients (i.e. nitrogen and phosphorus) from a water stream and partially incorporate them into their cell structure - struggle to adapt with increased urbanization due to land and infrastructure requirements. The circulating fluidized-bed bioreactor (CFBBR) was developed as a way to provide biological treatment in an urbanized area by cultivating high-density bacteria on an inert media. The technology operates as a pre-anoxic nitrification/denitrification wastewater treatment process. The system is initially loaded with media, providing a platform for microbial growth. Internal recycle streams in the system provide the energy to …


Identification And Quantification Of Gaseous Organic Compounds Emitted From Biomass Burning Using Two-Dimensional Gas Chromatography–Time-Of-Flight Mass Spectrometry, Lindsay E. Hatch, Wentai Luo, James F. Pankow, Robert J. Yokelson, Chelsea E. Stockwell, Kelley Barsanti Feb 2015

Identification And Quantification Of Gaseous Organic Compounds Emitted From Biomass Burning Using Two-Dimensional Gas Chromatography–Time-Of-Flight Mass Spectrometry, Lindsay E. Hatch, Wentai Luo, James F. Pankow, Robert J. Yokelson, Chelsea E. Stockwell, Kelley Barsanti

Civil and Environmental Engineering Faculty Publications and Presentations

The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME- 4) and analyzed by two-dimensional gas chromatography– time-of-flight mass spectrometry (GC × GC–ToFMS). The sensitivity and resolving power of GC × GC–ToFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measurements for 708 positively or tentatively identified compounds. Estimated …