Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

City University of New York (CUNY)

2021

Articles 1 - 2 of 2

Full-Text Articles in Biochemical and Biomolecular Engineering

Threshold Concentration And Random Collision Determine The Growth Of The Huntingtin Inclusion From A Stable Core, Sen Pei, Theresa C. Swayne, Jeffrey F. Morris, Lesley Emtage Aug 2021

Threshold Concentration And Random Collision Determine The Growth Of The Huntingtin Inclusion From A Stable Core, Sen Pei, Theresa C. Swayne, Jeffrey F. Morris, Lesley Emtage

Publications and Research

The processes underlying formation and growth of unfolded protein inclusions are relevant to neurodegenerative diseases but poorly characterized in living cells. In S. cerevisiae, inclusions formed by mutant huntingtin (mHtt) have some characteristics of biomolecular condensates but the physical nature and growth mechanisms of inclusion bodies remain unclear. We have probed the relationship between concentration and inclusion growth in vivo and find that growth of mHtt inclusions in living cells is triggered at a cytoplasmic threshold concentration, while reduction in cytoplasmic mHtt causes inclusions to shrink. The growth rate is consistent with incorporation of new material through collision and coalescence. …


Heparan Sulfate Proteoglycan Glypican‑1 And Pecam‑1 Cooperate In Shear‑Induced Endothelial Nitric Oxide Production, Anne Marie W. Bartosch, Rick Mathews, Marwa M. Mahmoud, Limary M. Cancel, Zahin S. Haq, John M. Tarbell May 2021

Heparan Sulfate Proteoglycan Glypican‑1 And Pecam‑1 Cooperate In Shear‑Induced Endothelial Nitric Oxide Production, Anne Marie W. Bartosch, Rick Mathews, Marwa M. Mahmoud, Limary M. Cancel, Zahin S. Haq, John M. Tarbell

Publications and Research

This study aimed to clarify the role of glypican-1 and PECAM-1 in shear-induced nitric oxide production in endothelial cells. Atomic force microscopy pulling was used to apply force to glypican-1 and PECAM-1 on the surface of human umbilical vein endothelial cells and nitric oxide was measured using a fluorescent reporter dye. Glypican-1 pulling for 30 min stimulated nitric oxide production while PECAM-1 pulling did not. However, PECAM-1 downstream activation was necessary for the glypican-1 force-induced response. Glypican-1 knockout mice exhibited impaired flow-induced phosphorylation of eNOS without changes to PECAM-1 expression. A cooperation mechanism for the mechanotransduction of fluid shear stress …