Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biochemical and Biomolecular Engineering

Comparative Evaluation Of Two Glass Polyalkenoate Cements: An In Vivo Pilot Study Using A Sheep Model, Leyla Hasandoost, Daniella Marx, Paul Zalzal, Oleg Safir, Mark Hurtig, Cina Mehrvar, Stephen D. Waldman, Marcello Papini, Mark R. Towler Sep 2021

Comparative Evaluation Of Two Glass Polyalkenoate Cements: An In Vivo Pilot Study Using A Sheep Model, Leyla Hasandoost, Daniella Marx, Paul Zalzal, Oleg Safir, Mark Hurtig, Cina Mehrvar, Stephen D. Waldman, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Poly(methyl methacrylate) (PMMA) is used to manage bone loss in revision total knee arthroplasty (rTKA). However, the application of PMMA has been associated with complications such as volumetric shrinkage, necrosis, wear debris, and loosening. Glass polyalkenoate cements (GPCs) have potential bone cementation applications. Unlike PMMA, GPC does not undergo volumetric shrinkage, adheres chemically to bone, and does not undergo an exothermic setting reaction. In this study, two different compositions of GPCs (GPCA and GPCB), based on the patented glass system SiO2-CaO-SrO-P2O5-Ta2O5, were investigated. Working and setting times, pH, ion release, …


In Vitro Osteogenic Performance Of Two Novel Strontium And Zinc-Containing Glass Polyalkenoate Cements, Daniella Marx, Alireza Rahimnejad Yazdi, Marcello Papini, Mark R. Towler Aug 2021

In Vitro Osteogenic Performance Of Two Novel Strontium And Zinc-Containing Glass Polyalkenoate Cements, Daniella Marx, Alireza Rahimnejad Yazdi, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Glass polyalkenoate cements (GPCs) are under investigation as potential bone adhesives, as they may provide an alternative to polymethylmethacrylate-based cements. GPCs containing strontium (Sr) and zinc (Zn) in place of aluminum (Al) are of particular interest because these ions are known stimulators of osteoprogenitor differentiation. GPCs have been manufactured from a novel bioactive glass (SiO2:0.48, ZnO:0.36, CaO:0.12, SrO:0.04) in the past, but, while such materials have been assessed for their influence on viability, their influence on osteogenic function has not been investigated until now. For this study, two GPCs were formulated from the same glass precursor evaluated in previous studies. …


A Portable Point-Of-Care Device Using Joule Heating And Latent Energy Storage For The Temperature Regulation Of Isothermal Nucleic Acid Amplification Tests, Aubrey Lynn Schultz Jul 2021

A Portable Point-Of-Care Device Using Joule Heating And Latent Energy Storage For The Temperature Regulation Of Isothermal Nucleic Acid Amplification Tests, Aubrey Lynn Schultz

Graduate Theses and Dissertations

Accurate and early diagnosis of infectious diseases extremely important. Rapid diagnosis allows for effective treatment and increases the chance for recovery without complications. Additionally, the ability to test the populace frequently, swiftly, and affordably significantly aids in containing wide-scale outbreaks. In terms of specificity and sensitivity, nucleic acid amplification tests (NAAT) are one of the best options for diagnosing infectious diseases. Isothermal NAATS present a unique opportunity to create diagnostic tests deployed at a Point-of-Care (POC) level. Specifically, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) have the potential to deliver reliable POC diagnostics in low-resource settings. When designing …


A Gallium-Doped Cement For The Treatment Of Bone Cancers. The Effect Of Zno ↔ Ga2o3substitution Of An Ionomeric Glass Series On The Rheological, Mechanical, Ph And Ion-Eluting Properties Of Their Corresponding Glass Polyalkenoate Cements, Sunjeev Phull, Alireza Rahimnejad Yazdi, Mark R. Towler Jun 2021

A Gallium-Doped Cement For The Treatment Of Bone Cancers. The Effect Of Zno ↔ Ga2o3substitution Of An Ionomeric Glass Series On The Rheological, Mechanical, Ph And Ion-Eluting Properties Of Their Corresponding Glass Polyalkenoate Cements, Sunjeev Phull, Alireza Rahimnejad Yazdi, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

The primary treatment for patients suffering from bone cancers is resection of the tumor followed by reconstruction of the damaged bone. Despite the administration of post-operative chemotherapy, tumor recurrence continues to present itself as a severe complication leading to re-operation. Attempts to incorporate chemotherapeutic drugs into bone cements elicits local toxic effects on healthy bone, which could compromise implant fixation. Alternatively, the local administration of gallium (Ga) may prove to be more effective. This report considers the development of a Ga ionomeric glass series (0.48SiO2-0.355ZnO-0.06CaO-0.08SrO-0.02P2O5-0.005Ta2O5, with 0.01-0.05 mol% substitution for …


In Vivo Analysis Of A Proprietary Glass-Based Adhesive For Sternal Fixation And Stabilization Using Rabbit And Sheep Models, Cina Mehrvar, Emily Deignan, Mark Hurtig, Gideon Cohen, Paul Zalzal, Oleg Safir, Adel Alhalawani, Marcello Papini, Mark R. Towler May 2021

In Vivo Analysis Of A Proprietary Glass-Based Adhesive For Sternal Fixation And Stabilization Using Rabbit And Sheep Models, Cina Mehrvar, Emily Deignan, Mark Hurtig, Gideon Cohen, Paul Zalzal, Oleg Safir, Adel Alhalawani, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Wire cerclage remains the standard method of care for sternal fixation, following median sternotomy, despite being beset with complications. An emerging treatment option has been to augment the wires with an adhesive. A patented ionomeric glass (mole fraction: SiO2:0.48, ZnO:0.36, CaO:0.12, SrO:0.04) has been used to formulate GPC+, a glass polyalkenoate cement (GPC), by mixing it with poly(acrylic) acid (PAA) and de-ionized water. In a human cadaver study, this material, when applied with wire cerclage, was able to significantly reduce sternal instability. However, the material has yet to be tested in pertinent animal models. Here, after a series …


Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell May 2021

Development Of An Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device To Increase Electrolyte Concentrations Of Human Blood Flow To Power Biomedical Devices, Caroline Campbell

Chemical Engineering Undergraduate Honors Theses

Emerging technologies in nanotechnology and biomedical sciences have led to an increase in biomedical implantable devices including cardiac pacemakers, artificial organs, drug pumps, and sensors. These devices require continuous stable and reliable power to operate, which creates the demand for the need to find a safe, reliable, and stable power source. A promising avenue for a power source for these devices is a miniaturized reverse electrodialysis (RED) biopower cell design that utilizes the salinity differences between bloodstreams that flow inside the human body. Initial results of the RED system demonstrate that higher gradient salinity differences between streams lead to a …


Bone Cement As A Local Chemotherapeutic Drug Delivery Carrier In Orthopedic Oncology: A Review, Sunjeev S. Phull, Alireza Rahimnejad Yazdi, Michelle Ghert, Mark R. Towler Feb 2021

Bone Cement As A Local Chemotherapeutic Drug Delivery Carrier In Orthopedic Oncology: A Review, Sunjeev S. Phull, Alireza Rahimnejad Yazdi, Michelle Ghert, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Metastatic bone lesions are common among patients with advanced cancers. While chemotherapy and radiotherapy may be prescribed immediately after diagnosis, the majority of severe metastatic bone lesions are treated by reconstructive surgery, which, in some cases, is followed by postoperative radiotherapy or chemotherapy. However, despite recent advancements in orthopedic surgery, patients undergoing reconstruction still have the risk of developing severe complications such as tumor recurrence and reconstruction failure. This has led to the introduction and evaluation of poly (methyl methacrylate) and inorganic bone cements as local carriers for chemotherapeutic drugs (usually, antineoplastic drugs (ANPDs)). The present work is a critical …


In Vitro Evaluation Of Novel Titania-Containing Borate Bioactive Glass Scaffolds, Romina Shafaghi, Omar Rodriguez, Anthony W. Wren, Loraine Chiu, Emil H. Schemitsch, Paul Zalzal, Stephen D. Waldman, Marcello Papini, Mark R. Towler Feb 2021

In Vitro Evaluation Of Novel Titania-Containing Borate Bioactive Glass Scaffolds, Romina Shafaghi, Omar Rodriguez, Anthony W. Wren, Loraine Chiu, Emil H. Schemitsch, Paul Zalzal, Stephen D. Waldman, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Titanium-containing borate bioactive glass scaffolds (0, 5, 15, and 20 mol %, identified as BRT0, BRT1, BRT3, and BRT4) with a microstructure similar to that of human trabecular bone were prepared and evaluated in vitro for potential bone loss applications in revision total knee arthroplasty (rTKA). Methyl thiazolyl tetrazolium (MTT) cell viability assays of scaffold ion release extracts revealed that BRT0 scaffolds (0 mol % titanium) inhibited cell proliferation and activity at day 14. At day 30, all scaffold extracts decreased cell proliferation and activity significantly. However, live/dead cell assay results demonstrated that degradation products from all the scaffolds had …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …