Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemical and Biomolecular Engineering

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer Dec 2016

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer

Masters Theses

Over-exploitation of fossil fuels coupled with increasing pressure to reduce carbon emissions are prompting a transition from conventional petrochemical feedstocks to sustainable and renewable sourced carbon. The use of lignocellulosic biomass as a feedstock for integrated biorefining is of current high interest, as separation into its component parts affords process streams of cellulose, hemicellulose and lignin, each of which can serve as a starting point for the production of biobased chemicals and fuels. Given the large number of potential sources of lignocellulosic feedstocks, the biorefinery will need to adapt to the supplies available over a normal growing season. Of particular …


Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu Dec 2016

Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu

Graduate Theses and Dissertations

Membrane chromatography, or membrane adsorber, represents an attractive alternative to conventional packed bed chromatography used in downstream processing. Membrane chromatography has many advantages, including high productivity, low buffer consumption and ease to scale up. This doctoral dissertation focuses on developing novel polymeric ligands for protein separations using membrane chromatography. Atom transfer radical polymerization (ATRP), known as a controlled radical polymerization technique, has been used to control the architecture of grafted polymeric ligands. The center theme of this dissertation is to develop new polymeric ligands and investigate how the polymer’s property (e.g. flexibility, hydrophobicity) and architecture (e.g. chain density, chain length) …


Conformationally Superarmed S-Ethyl Glycosyl Donors As Effective Building Blocks For Chemoselective Oligosaccharide Synthesis In One Pot, Mithila Bandara, Jagodige Yasomanee, Nigam Rath, Christian Pedersen, Mikael Bols, Alexei Demchenko Nov 2016

Conformationally Superarmed S-Ethyl Glycosyl Donors As Effective Building Blocks For Chemoselective Oligosaccharide Synthesis In One Pot, Mithila Bandara, Jagodige Yasomanee, Nigam Rath, Christian Pedersen, Mikael Bols, Alexei Demchenko

Chemistry & Biochemistry Faculty Works

A new series of superarmed glycosyl donors has been investigated. It was demonstrated that the S-ethyl leaving group allows for high reactivity, which is much higher than that of equally equipped S-phenyl glycosyl donors that were previously investigated by our groups. The superarmed S-ethyl glycosyl donors equipped with a 2-O-benzoyl group gave complete β-stereoselectivity. Utility of the new glycosyl donors has been demonstrated in a one-pot one-addition oligosaccharide synthesis with all of the reaction components present from the beginning.


In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson May 2016

In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson

Doctoral Dissertations

The development of a secure and sustainable energy economy is likely to require the production of fuels and commodity chemicals in a renewable manner. There has been renewed interest in biological commodity chemical production recently, in particular focusing on non-edible feedstocks. The fields of metabolic engineering and synthetic biology have arisen in the past 20 years to address the challenge of chemical production from biological feedstocks. Metabolic modeling is a powerful tool for studying the metabolism of an organism and predicting the effects of metabolic engineering strategies. Various techniques have been developed for modeling cellular metabolism, with the underlying principle …


Noninvasive Measurement Of Electrical Events Associated With A Single Chlorovirus Infection Of A Microalgal Cell, Seung-Woo Lee, Eun-Hee Lee, Gerhard Thiel, James L. Van Etten, Ravi Saraf Jan 2016

Noninvasive Measurement Of Electrical Events Associated With A Single Chlorovirus Infection Of A Microalgal Cell, Seung-Woo Lee, Eun-Hee Lee, Gerhard Thiel, James L. Van Etten, Ravi Saraf

Department of Chemical and Biomolecular Engineering: Faculty Publications

Chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains a viral-encoded K+ channel imbedded in its internal membrane, which triggers host plasma membrane depolarization during virus infection. This early stage of infection was monitored at high resolution by recording the cell membrane depolarization of a single Chlorella cell during infection by a single PBCV-1 particle. The measurement was achieved by depositing the cells onto a network of one-dimensional necklaces of Au nanoparticles, which spanned two electrodes 70 μm apart. The nanoparticle necklace array has been shown to behave as a single-electron device at room temperature. The resulting electrochemical field-effect transistor …