Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomaterials

Synthesis Of Thiol-Acrylate Hydrogels For 3d Cell Culture And Microfluidic Applications, Anowar Hossain Khan Mar 2022

Synthesis Of Thiol-Acrylate Hydrogels For 3d Cell Culture And Microfluidic Applications, Anowar Hossain Khan

LSU Doctoral Dissertations

Globally cell culture is an $18.98 billion industry as of 2020, with an 11.6 percent annual growth rate. Drug discovery has an estimated worth of $69.8 billion in 2020 and is predicted to grow to $110.4 billion by 2025. Three-dimensional (3D) cell culture of cancer cells is one of the rapidly growing felids since it better recapitulates in vivo conditions compared to two-dimensional (2D) models. However, it is challenging to grow 3D tumor spheroids outside the body, and some of the existing technology can generate these spheroids outside the human body but poorly mimic in vivo tumor models. Therefore, there …


Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter Mar 2022

Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter

Master's Theses

There is a need for a minimally invasive delivery method to enable cell therapies to combat peripheral artery occlusive disease (PAOD) in end stage patients. Myoblasts show promise as a cell mediated therapy but warrant an improved delivery method to increase cell retention in the region of interest because of their adherent nature, relative to previously used BM-MNC’s that are non-adherent. Contemporary issues with achieving successful cell therapies of vasculature can be mainly characterized by the lack of clinical translation from promising animal studies and absence of cell delivery scaffolding. Naturally, polymers have been widely experimented with as grafts to …


Development Of Cellulose-Based, Semi-Interpenetrating Network Hydrogels As Tissue-Adhesive, Thermoresponsive, Injectable Implants, Jesse Martin Jan 2022

Development Of Cellulose-Based, Semi-Interpenetrating Network Hydrogels As Tissue-Adhesive, Thermoresponsive, Injectable Implants, Jesse Martin

Dissertations and Theses

Abstract Development of Cellulose-Based, Semi-Interpenetrating Network Hydrogels as Tissue-Adhesive, Thermoresponsive, Injectable Implants

Hydrogels are three-dimensional polymer networks with high water content and tunable mechanical properties, which have been widely investigated as replacements for soft tissues, such as the intervertebral disc (IVD). Various derivatives of the plant polysaccharide, cellulose, have been explored for use as injectable hydrogel implants. Methylcellulose (MC), which exhibits thermogelation at temperatures above 32°C, and relatively hydrophilic carboxymethyl-cellulose (CMC), are versatile cellulosic polymers that have shown promise as base materials for such applications. In prior work, functionalization with methacrylate groups allowed for the formation of stable, covalently crosslinked …