Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomaterials

A Mechanism Behind The Mechanotransduction Of Surface Characteristics In Osteoblasts, Otto J. Juhl Iv Jan 2021

A Mechanism Behind The Mechanotransduction Of Surface Characteristics In Osteoblasts, Otto J. Juhl Iv

Theses and Dissertations

Biomaterials for use in bone regeneration and healing range from metal and metal alloy implants to hydrogel-based solutions. These materials can be optimized to increase bone healing and integration by improving the mechanical and biological properties. Regardless of the material itself, the cell-substrate interaction is key to the success of the biomaterial once implanted. Substrate surface characteristics such as roughness, wettability, and particle density are well-known contributors to a substrate’s overall osteogenic potential, and therefore the substrate's overall success. Unfortunately, it is still unknown how these substrate surface characteristics are transduced into intracellular signals by cells, preventing specific tailoring of …


The Role Of The Mechanical Environment On Cd117+ Endothelial Cell Angiogenesis, Patrick Link Jan 2019

The Role Of The Mechanical Environment On Cd117+ Endothelial Cell Angiogenesis, Patrick Link

Theses and Dissertations

Angiogenesis is a complex process coordinating cell migration, proliferation, and lumen formation. Changes to the microenvironment regulate angiogenesis through mechanotransduction and cytokine signals. In pulmonary hypertension, something in the process becomes abnormal, resulting in changes to the microenvironment and the formation of a glomerulus of dysfunctional capillaries, called a plexiform lesion. Endothelial cells, expressing CD117 (CD117+ EC clones) increase in the plexiform lesions of pulmonary hypertension, independent of pro-angiogenic VEGF signaling. We hypothesize that the mechanical environment and the macromolecular composition of the extracellular matrix, both, contribute to the aberrant angiogenesis. When we changed the mechanical environment, we changed the …