Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomaterials

Reprogramming And Imaging Of Tumor Associated Macrophages Using Spuramolecular Nanoparticles, Anujan Ramesh Aug 2023

Reprogramming And Imaging Of Tumor Associated Macrophages Using Spuramolecular Nanoparticles, Anujan Ramesh

Doctoral Dissertations

Macrophages are highly plastic cells that are a part of the mononuclear phagocytic system and play a crucial role in both the innate and the adaptive immune systems. Although they have functionally diverse roles involved in physiological and pathological processes, they primarily act as phagocytes that aid in clearing infections. During these instances of tissue injury or infections, circulating monocytes are recruited to the site of the injury, where they differentiate to give rise to macrophages that have a pro-inflammatory function. These monocytes derived macrophages, however, exist across a spectrum of phenotypes based on the local tissue environment. The two …


In Vitro And In Vivo Diabetic Models For Assessment Of Tissue Engineered Vascular Grafts, Juan Carlos Carrillo Garcia Aug 2023

In Vitro And In Vivo Diabetic Models For Assessment Of Tissue Engineered Vascular Grafts, Juan Carlos Carrillo Garcia

All Dissertations

Diabetes has become one of the leading causes of lower-limb loss worldwide. Every 30 seconds, a person loses a limb due to diabetic-related vascular complications. About one-third of patients needing lower-limb bypass surgery have debilitated autologous vessels unsuitable for use, and no other good long-term options are available. These detrimental effects on the vasculature are caused mainly by the hyperglycemic and hyperlipidemic conditions derived from diabetes. Under these conditions, an increase in advanced glycation end products (AGEs) and reactive oxygen species leads to irreversible crosslinks of extracellular matrix proteins, accelerating vascular pathology through vascular stiffening, endothelial dysfunction, inflammation, atherosclerosis, fibrosis, …


Polymeric Biomaterials Approaches For Engineering The In Vitro Cellular Microenvironment For Mscs, Mahsa Letter-Mahsa Haseli May 2023

Polymeric Biomaterials Approaches For Engineering The In Vitro Cellular Microenvironment For Mscs, Mahsa Letter-Mahsa Haseli

Graduate Theses and Dissertations

Cell therapy is a technology that relies on replacing diseased or dysfunctional cells with healthy functioning ones. One of the cells used for such advanced therapies are stem cells, owing to their ability to differentiate into specific cells required for repairing damaged or defective tissues or cells. The majority of cell-based products are intended to transiently persist in the patient, secreting factors which then allow the patient’s body to heal; in these products, the cells are subsequently eliminated from the body. Furthermore, unique manufacturing platforms, in addition to novel commercialization strategies, will be required to create a successful, sustainable cell …


Study Of The Stability Of Heparin/Collagen Layer-By-Layer Coatings, Hector M. Apodaca Reyes May 2023

Study Of The Stability Of Heparin/Collagen Layer-By-Layer Coatings, Hector M. Apodaca Reyes

Chemical Engineering Undergraduate Honors Theses

Pairing heparin with collagen-based medical implants has opened a whole new area of research for enhancing the desired effect of current implants. In fact, heparin (HEP) and collagen (COL) layer-by-layer (LbL) coatings have shown impressive results in forming polyelectrolyte multilayers. It has been already seen on skin grafts, nerve guide conduits (NGCs), and drug delivery devices yielding promising results. Due to being a simple, cost-efficient, and versatile option to fabricate thin biomimetic films, this self-assembly technique is one of the most effective methods to immobilize extracellular matrix (collagen and heparin) onto medical devices and implants. Even though previous studies have …


Regenerative Medicine For Tendon/Ligament Injuries: De Novo Equine Tendon/Ligament Neotissue Generation And Application, Takashi Taguchi Apr 2023

Regenerative Medicine For Tendon/Ligament Injuries: De Novo Equine Tendon/Ligament Neotissue Generation And Application, Takashi Taguchi

LSU Doctoral Dissertations

Tendon and ligament injuries are debilitating conditions across species. Poor regenerative capacities of these tissues limit restoration of original functions. The first study evaluated the effect of cellular administration on tendon/ligament injuries in horses using meta-analysis. The cellular administration was effective in restoring ultrasonographic echogenicity and increasing vascularity during early phase of healing. Additionally, it improved microstructural organization of healed tissue in terms of cellularity and fiber alignment. However, the study did not support its use for increasing rate of return to performance, expression/deposition of tendon-specific genes/proteins, or mechanical properties.

The findings led to the second study that engineered implantable …


Development Of A Cell-Based Regenerative Strategy To Modulate Angiogenesis And Inflammation In Ischemic Muscle, Fiona E. Serack Feb 2023

Development Of A Cell-Based Regenerative Strategy To Modulate Angiogenesis And Inflammation In Ischemic Muscle, Fiona E. Serack

Electronic Thesis and Dissertation Repository

The delivery of human adipose-derived stromal cells (hASCs) to ischemic tissues represents a promising strategy to promote vascular regeneration for patients with critical limb ischemia (CLI). This thesis focused on the evaluation of hydrogels to enhance the retention and pro-angiogenic capacity of hASCs following delivery in vivo. Additionally, priming strategies to augment the paracrine function of hASCs were developed and assessed.

Recognizing the importance of endogenous macrophages in the pro-regenerative function of hASCs, delivery using a previously-developed hydrogel system, composed of peptide-functionalized methacrylated glycol chitosan (MGC-RGD) and a copolymer of poly(ethylene glycol) and poly(trimethylene carbonate) (PEG(PTMC-A)2), was …


3-Dimensional Muscle Constructs: Using Hydrogels In Order To Model The Effects Of Exercise In Disease Conditions, Mark Mchargue Jan 2023

3-Dimensional Muscle Constructs: Using Hydrogels In Order To Model The Effects Of Exercise In Disease Conditions, Mark Mchargue

Theses and Dissertations--Biomedical Engineering

Currently, there is no standard in vitro model for studying the effects of mechanical stimulation on muscle in type II diabetes. Existing models primarily utilize electrical stimulation, which does not fully recapitulate the effects of exercise. In this thesis, we create a standardized in vitro model of murine muscle that can recapitulate the benefits seen in exercise when mechanically stimulated. Moreover, we show that a type II diabetes environment has similar effects on the muscle in vitro as well as in vivo.


The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling Jan 2023

The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling

Theses and Dissertations

Treatments for acute respiratory distress syndrome (ARDS) are still unavailable and the prevalence of the disease has only increased due to the Covid-19 pandemic. Mechanical ventilation regiments are still utilized to support declining lung function, but they also contribute to lung damage and increase the risk of bacterial infection. The anti-inflammatory and pro-regenerative abilities of mesenchymal stromal cells (MSCs) have shown to be a promising therapy for ARDS. We propose to utilize the regenerative effects of MSC secretome and the extracellular matrix (ECM) into a nanoparticle. Our mouse MSC (MMSC) ECM nanoparticles were characterized using size, zeta-potential, and mass spectrometry …