Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 54

Full-Text Articles in Biological Engineering

Real-Time Monitoring Of Cell Death Progress Using Capacitance Spectroscopy, Suyang Wu Dec 2021

Real-Time Monitoring Of Cell Death Progress Using Capacitance Spectroscopy, Suyang Wu

Electronic Theses and Dissertations

Biologics, including the monoclonal antibody (mAb), has experienced rapid development in the last decade. However, the price of biologics is often prohibitively high because of the low process efficiency. Delaying the inevitable cell death improves the productivity of upstream bioprocessing, whose success relies on monitoring the cell death onset that indicates the timing for preventive actions.

This study proposes to develop a real-time monitoring model that quantifies the dying cell percentage in lab-scale bioreactors using capacitance spectroscopy. The capacitance spectroscopy contains cell death-related information due to various physical properties changes during the cell death process, e.g., cytoplasmic conductivity change. The …


Plasmonically-Enhanced Dna-Rna Hybrid-Based Bioassay For Amplification-Free Quantification Of Sars-Cov-2, Yuxiong Liu Dec 2021

Plasmonically-Enhanced Dna-Rna Hybrid-Based Bioassay For Amplification-Free Quantification Of Sars-Cov-2, Yuxiong Liu

McKelvey School of Engineering Theses & Dissertations

Corona Virus Disease 2019 (COIVD-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a highly infectious respiratory illness. Within just a few months, it spread around the whole world and became a global pandemic. Real-time reverse-transcription polymerase chain reaction (RT-PCR) works as a gold standard method diagnosing COVID-19 with high sensitivity and specificity. But due to the programs of RT-PCR, it usually takes more than 24 hours to get the results while specialized devices are also required. False-negative results can happen as well using RT-PCR which increase the risk of spreading coronavirus. To promote quicker detection of COVID-19, …


Hydrology And Water Quality Analysis In The Big Black River Watershed, Mississippi, Moniba Shabbir Dec 2021

Hydrology And Water Quality Analysis In The Big Black River Watershed, Mississippi, Moniba Shabbir

Theses and Dissertations

Evaluating hydrology and water quality for the Big Black River Watershed in Mississippi was accomplished by using the Better Assessment Science Integrating Point and Nonpoint Source (BASINS 4.5), Loading Simulation Program in C++ (LSPC), and Water Quality Analysis Simulation Program (WASP) models. The watershed model calibration was originally accomplished by using historical data collected from U.S. Geological Survey (USGS). The watershed model was calibrated using data from 2000 through 2018 in order to quantify stream flow and point source discharges under a variety of hydrologic conditions. The model predicted response of hydrology was consistent with the observed data range. The …


Design Of Plastic Contaminant Eliminator In Seed Cotton, Joshua H. Tandio Dec 2021

Design Of Plastic Contaminant Eliminator In Seed Cotton, Joshua H. Tandio

Theses and Dissertations

Plastic contamination in cotton is a problem in cotton industry and researchers have worked on this problem with different approaches. This thesis documents the design of mechanical and electronic real-time systems for detecting and removing plastic contaminants. The mechanical system was designed to expose plastic embedded inside the seed cotton to the sensor and to separate plastic contaminated cotton from the process stream. The detection system consisted of an embedded computer interfaced with a USB camera and Neural Network (NN) software running in it. Two NN models were tested, a transfer learning model and a built-from-scratch original model. The original …


Effectiveness Of Cannabidiol And Resveratrol Against Diesel Exhaust Particle-Induced Lung Cell Cytotoxicity, Emily Brothersen Dec 2021

Effectiveness Of Cannabidiol And Resveratrol Against Diesel Exhaust Particle-Induced Lung Cell Cytotoxicity, Emily Brothersen

Fall Student Research Symposium 2021

Environmental air pollution poses a significant health risk to individuals across the world. Diesel exhaust particles (DEPs), a major component of air pollution, have been shown to cause lung damage leading to cancer, respiratory infections, and premature death. Antioxidants, such as resveratrol, have previously demonstrated protective properties against DEP-induced cytotoxicity and reactive oxygen species. Cannabinoids extracted from hemp species have also been found to have powerful antioxidant properties, though these properties have not been thoroughly explored. In this study, A549 human lung carcinoma cells were used as a cellular model to determine the effectiveness of cannabinoids’ antioxidant properties against DEP-induced …


A Survey Of Stainless Steel In Medical And Surgical Application, Noah Slack, Clint Balch Dec 2021

A Survey Of Stainless Steel In Medical And Surgical Application, Noah Slack, Clint Balch

ME 4133/6133 Mechanical Metallurgy

Stainless steels can be separated into four families based on the microstructure of the material: Austenitic, Ferritic, Martensitic, and Duplex. Each family provides a specific set of advantages and disadvantages, and material selection should be based on the specific application the material will be used for. For this study, the processing, microstructure, and performance of the four families of stainless steels will be compared in the context of medical device applications. The most important factors in medical device materials are biocompatibility, surface properties, mechanical properties and life span/corrosion resistance. This study will focus on medical devices that will be permanently …


Development And Characterization Of A Decellularized Neuroinhibitory Scaffold Containing Matrix Bound Nanovesicles, Logan Piening Dec 2021

Development And Characterization Of A Decellularized Neuroinhibitory Scaffold Containing Matrix Bound Nanovesicles, Logan Piening

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Chronic low back pain (LBP) is a leading cause of disability but treatments for LBP are limited. Degeneration of the intervertebral disc leads to loss of neuroinhibitory sulfated glycosaminoglycans (sGAGs) which allows nerves from dorsal root ganglia (DRG) to grow into the core of the disc, leading to pain. Current treatments for LBP involve drugs that do not target the source of the pain and lack long term efficacy or use invasive surgeries with high complication rates. Treatment with a decellularized tissue scaffold that contains neuroinhibitory components may inhibit nerve growth and prevent disc-associated LBP. Here, a decellularized nucleus pulposus …


Greenhouse Tomatoes: Process Simulation, Juan Gabriel Marin Jr. Dec 2021

Greenhouse Tomatoes: Process Simulation, Juan Gabriel Marin Jr.

Graduate Theses and Dissertations

Growing population demand and challenges brought on by climate change have spurred the need for more resilient fruit and vegetable supply chains. One agricultural technology of significant interest is the use of greenhouses for food production. Greenhouses create a stable and adaptable environment for crops such as tomatoes to grow year-round. Fresh tomatoes are the second most consumed vegetable per capita in U.S. diets, currently averaging 20.7 pounds. The growing consumption of fresh tomatoes has been the result of increasing cultural diversity in the United States.

To meet the growing demand, Venlo-type greenhouses have been frequently used by growers. It …


Evapotranspiration In Mid-South Rice Production, Colby Wade Reavis Dec 2021

Evapotranspiration In Mid-South Rice Production, Colby Wade Reavis

Graduate Theses and Dissertations

Rice provides much needed sustenance to a large portion of the global population, particularly in the developing world. With stress placed on food production systems under the reality of climate change and an increasing global population, rice production systems require solutions to a number of issues, including a limited water supply. As producers explore new strategies for conserving local water resources to continue to maintain yields, new irrigation strategies and technologies are being developed and validated for use at commercial production scales. Alternate wetting and drying (AWD) is an irrigation practice that provides water savings through the capture of rainfall …


Toward Lignin Valorization: Development Of Rhodococcus Opacus Pd630 As A Chassis For Triacylglycerol (Tag) Production From Recalcitrant Aromatic Feedstocks, Rhiannon R. Carr Dec 2021

Toward Lignin Valorization: Development Of Rhodococcus Opacus Pd630 As A Chassis For Triacylglycerol (Tag) Production From Recalcitrant Aromatic Feedstocks, Rhiannon R. Carr

McKelvey School of Engineering Theses & Dissertations

The advent of the industrial era was precipitated by the discovery of fossil fuels, and ushered in unprecedented changes for humanity included but not limited to the development of rapid transit and communications, improvements to food distribution and preservation, the mass production of goods, and a radical rearrangement of communities from relatively small enclaves to metropolises. With all the benefits, however, come considerable costs, especially to the global environment. Greenhouse gas emissions, built up over centuries of unregulated combustion, have precipitated a rate of global temperature change unparalleled in the 4.5 billion-year history of this planet. In order to preserve …


Effect Of Hydrogen Peroxide On Algae And Microcystin In Control And Lake Waters, Tatiana Castillo Hernandez Dec 2021

Effect Of Hydrogen Peroxide On Algae And Microcystin In Control And Lake Waters, Tatiana Castillo Hernandez

Biological and Agricultural Engineering Undergraduate Honors Theses

Cyanobacteria are photo-autotrophic organisms with a worldwide distribution, which can result in Harmful Algal Blooms (HABs) producing toxins. One of the most common strains of cyanobacteria is Microcystis, which produces the most abundant cyanotoxin, microcystin. In this study, we analyzed the effect of H2O2 on algae and microcystin using both lake and reagent grade water. The first objective was to determine the effect of H2O2 on algae and cyanobacteria in lake water that was nutrient enriched. The second objective was to detect the effect of H2O2 at oxidizing microcystin in …


Visualizing Bacteriophage Evolution Through Sequence And Structural Phylogeny Of Lysin A And Terminase Proteins: An Analysis Of Protein Structure Across Phage Clusters, Maansi Asthana, Alyssa Easton, Julia Mollenhauer, Sean Renwick, Anita Golpalrathnam Oct 2021

Visualizing Bacteriophage Evolution Through Sequence And Structural Phylogeny Of Lysin A And Terminase Proteins: An Analysis Of Protein Structure Across Phage Clusters, Maansi Asthana, Alyssa Easton, Julia Mollenhauer, Sean Renwick, Anita Golpalrathnam

The Journal of Purdue Undergraduate Research

Understanding how genes evolve and persist is a critical part of viral genomics. Bacteriophages can provide unique insight about viral evolution because of their abundance and largely unexplored history. Traditionally, phylogenetic trees have used DNA sequence comparison to visualize evolutionary paths between organisms. However, DNA sequence similarity does not reflect key alterations to protein structure and therefore how the protein performs its function. Phylogenetic trees based on predicted protein structure could provide an alternative lens through which to view evolutionary paths. From each of the 10 largest clusters included in the Actinobacteriophage Database, three mycobacteriophage genomes were selected. Lysin A …


A Single Cell Pair Mechanical Interrogation Platform To Study Cell-Cell Adhesion Mechanics, Amir Monemianesfahani Aug 2021

A Single Cell Pair Mechanical Interrogation Platform To Study Cell-Cell Adhesion Mechanics, Amir Monemianesfahani

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Cell-cell adhesion complexes are macromolecular adhesive organelles that integrate cells into tissues. Perturbations of the cell-cell adhesion structure or relatedmechanotransduction pathways lead to pathological conditions such as skin and heart diseases, arthritis, and cancer. Mechanical stretching has been used to stimulate the mechanotransduction process originating from the cell-cell adhesion and cell-extracellular matrix (ECM) complexes. The current techniques, however, have limitations on their ability to measure the cell-cell adhesion force directly and quantitatively. These methods use a monolayer of cells, which makes it impossible to quantify the forces within a single cell-cell adhesion complex. Other methods using single cells or cell …


Efficient Polyhydroxyalkanoate Production By Rhodopseudomonas Palustris From Lignocellulosic Biomass, Brandi Brown Jul 2021

Efficient Polyhydroxyalkanoate Production By Rhodopseudomonas Palustris From Lignocellulosic Biomass, Brandi Brown

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Polyhydroxyalkanoates (PHAs) are biopolymers produced by bacteria with the potential to replace conventional plastics. However, the relatively high production costs of PHAs are keeping them from market acceptance, with approximately half of the production costs derived from the feedstock. Thus, engineering a microbe for PHA production from cheaper and renewable carbon sources is necessary to promote the valorization of PHAs. Lignocellulosic biomass is considered to be one of the most economic carbon sources in the world, and is thus an attractive candidate for cheaper production of bioplastics. Rhodopseudomonas palustris CGA009 is a metabolically robust bacterium capable of catabolizing lignin breakdown …


Evaluation Of Cell Concentration And Viability By Impedance Spectroscopy On Microfluidic Devices, Jason Eades Jul 2021

Evaluation Of Cell Concentration And Viability By Impedance Spectroscopy On Microfluidic Devices, Jason Eades

LSU Master's Theses

This document describes two distinct platforms that implement electrochemical impedance spectroscopy (EIS) within microfluidic devices for rapid, label-free cell analysis. Each study provides proof-of-concept evaluations of these devices for cell counting and viability analysis applications to mitigate some of the challenges associated with conventional methods. Chapter one includes background information on each version of EIS selected and motivations for the studies conducted. Chapter two describes the design and fabrication of a modular, reusable microfluidic device. Additionally, the methodology for and results from the application of this platform for the measurement of zebrafish sperm cell concentrations are presented. Chapter three describes …


A Portable Point-Of-Care Device Using Joule Heating And Latent Energy Storage For The Temperature Regulation Of Isothermal Nucleic Acid Amplification Tests, Aubrey Lynn Schultz Jul 2021

A Portable Point-Of-Care Device Using Joule Heating And Latent Energy Storage For The Temperature Regulation Of Isothermal Nucleic Acid Amplification Tests, Aubrey Lynn Schultz

Graduate Theses and Dissertations

Accurate and early diagnosis of infectious diseases extremely important. Rapid diagnosis allows for effective treatment and increases the chance for recovery without complications. Additionally, the ability to test the populace frequently, swiftly, and affordably significantly aids in containing wide-scale outbreaks. In terms of specificity and sensitivity, nucleic acid amplification tests (NAAT) are one of the best options for diagnosing infectious diseases. Isothermal NAATS present a unique opportunity to create diagnostic tests deployed at a Point-of-Care (POC) level. Specifically, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) have the potential to deliver reliable POC diagnostics in low-resource settings. When designing …


Nanomaterial-Based Biosensors For Detection Of Salmonella Typhimurium And Avian Influenza Virus H5n1 In Poultry, Xinge Xi Jul 2021

Nanomaterial-Based Biosensors For Detection Of Salmonella Typhimurium And Avian Influenza Virus H5n1 In Poultry, Xinge Xi

Graduate Theses and Dissertations

This research focused on developing biosensing method and biosensing device for rapid detection of pathogens in poultry: Salmonella Typhimurium and avian influenza virus H5N1. The first part of the dissertation reports an original research on the development of a portable biosensing device for Salmonella detection. The device was designed and constructed based on a previously developed optical biosensing method, using immuno-magnetic nanoparticles to specifically capture target bacteria, and immuno-quantum dot beads to label the target bacteria for fluorescence detection. All the actions of sample mixing, magnetic separation, and fluorescence detection were controlled automatically in a disposable microfluidic chip in the …


Surface Enhanced Raman Spectroscopy (Sers) As An Approach For The Emerging Liquid Biopsy Diagnostics, Nariman Banaei Jun 2021

Surface Enhanced Raman Spectroscopy (Sers) As An Approach For The Emerging Liquid Biopsy Diagnostics, Nariman Banaei

Doctoral Dissertations

Large Molecule bioanalysis and biosensor development are essential techniques that are required in many applications, including biotherapeutic development, in vitro diagnostic, biomarker detection, and early detection. These techniques should be highly specific and sensitive enough to identify and quantify an analyte of interest with minimum sample pretreatment requirements. This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS). It introduces sensing techniques to quantify various disease biomarkers, specifically pancreatic cancer. Blood is the best source of information about our body's function. There are many biomarkers in the blood, and each biomarker's high expression level …


Functional And Dysrhythmic Slow Waves In The Stomach - An In Silico Study, Md Ashfaq Ahmed Jun 2021

Functional And Dysrhythmic Slow Waves In The Stomach - An In Silico Study, Md Ashfaq Ahmed

FIU Electronic Theses and Dissertations

Peristalsis, the coordinated contraction and relaxation of the muscles of the stomach, is important for normal gastric motility and is impaired in motility disorders. Coordinated electrical depolarizations that originate and propagate within a mutually coupled network of interstitial cells of Cajal (ICC) and smooth muscle cells of the stomach wall as a slow-wave, underly peristalsis. Normally, the gastric slow-wave (GSW) oscillates with a single period and uniform rostro-caudal lag, exhibiting network entrainment. Loss of entrainment in the coupled network and the resulting impairment in slow-wave propagation is associated with various gastric motility disorders. Our study provides an enhanced understanding of …


Modeling The Effect Of Igg Subclasses And Specificity In The Translocation Of Monoclonal Antibodies Across The Placental Barrier, Sayuri Tais Miyamoto Magnabosco Jun 2021

Modeling The Effect Of Igg Subclasses And Specificity In The Translocation Of Monoclonal Antibodies Across The Placental Barrier, Sayuri Tais Miyamoto Magnabosco

ENGS 88 Honors Thesis (AB Students)

Infections are responsible for over half a million neonatal deaths every year (Lawn et al., 2014). Thus, there is huge interest in leveraging maternal immunization against infectious diseases to grant fetal protection during its development through the vertical transferring of IgG antibodies, the only Ig subclass that can significantly cross the placental barrier. Studies about vertical immunization rely on in-vitro models to extrapolate physiological conditions of the human placenta. The BeWo Transwell model (Bode et al., 2006) presents itself as a reliable model to mimic the transplacental transport mechanism of antibodies (Ellinger et al., 1999; Poulsen et al., 2009) …


The Impact Of Myoblast Transplantation On Collateral Capillary Arteriogenesis And Macrophage Phenotype, Christine Hue Do Jun 2021

The Impact Of Myoblast Transplantation On Collateral Capillary Arteriogenesis And Macrophage Phenotype, Christine Hue Do

Biomedical Engineering

Gangrene, pain, loss of limb function, amputation, and death are only few of the grievous consequences associated with peripheral arterial disease (PAD), a vascular disease caused by an obstruction that narrows the blood vessels. Since some patients have collateral vessels that can re-route blood to its downstream destination, much focus has been spotlighted upon discovering the mechanism of this process, termed arteriogenesis, as well as cell therapies to increase arterial diameter of collateral vessels. Since some patients do not have native pre-existing collateral vessels, another method to re-route blood is through arterialized collateral capillaries (ACC), which is the conversion of …


Reu Site: Stem For Plant Health, David W. Britt May 2021

Reu Site: Stem For Plant Health, David W. Britt

Funded Research Records

No abstract provided.


Tuning Radiation And Microgravity Exposure For Human Brain Organoids, Bailey Mcfarland May 2021

Tuning Radiation And Microgravity Exposure For Human Brain Organoids, Bailey Mcfarland

Utah Space Grant Consortium

The environment of space, specifically radiation and microgravity, poses a substantial threat to astronauts' brain health. Understanding the damage mechanism and therefore paving the way to finding potential remedies is critical to protect astronauts during space flight. Current models are insufficient at representing the human brain, and insufficient research has been conducted on the effect of radiation and microgravity on the higher structures of the human brain. This ongoing research aims to use brain organoids, a tissue-engineered model that recapitulates the human brain's anatomy and structure and investigate the effects of radiation and microgravity on the brain. At the current …


Non-Contact Techniques For Human Vital Sign Detection And Gait Analysis, Farnaz Foroughian May 2021

Non-Contact Techniques For Human Vital Sign Detection And Gait Analysis, Farnaz Foroughian

Doctoral Dissertations

Human vital signs including respiratory rate, heart rate, oxygen saturation, blood pressure, and body temperature are important physiological parameters that are used to track and monitor human health condition. Another important biological parameter of human health is human gait. Human vital sign detection and gait investigations have been attracted many scientists and practitioners in various fields such as sport medicine, geriatric medicine, bio-mechanic and bio-medical engineering and has many biological and medical applications such as diagnosis of health issues and abnormalities, elderly care and health monitoring, athlete performance analysis, and treatment of joint problems. Thoroughly tracking and understanding the normal …


Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor May 2021

Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor

Doctoral Dissertations

Hydropower accounts for nearly 40% of renewable electricity generation in the US; however, dams significantly impact the surrounding aquatic ecosystems. One of the most visible impacts of hydropower―beyond the dam itself―is the direct negative impacts (injury or death) to fish populations that must pass through hydropower turbines to access desired downstream habitat. During passage, fishes face many potential stressors that can cause severe injuries and often leads to high rates of mortality. In this dissertation, I have focused on quantifying how fishes respond to impacts from turbine blades that may occur during turbine passage. Laboratory research into blade strike impact …


Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David May 2021

Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David

Biomedical Engineering Undergraduate Honors Theses

Despite significant progress in the field of peripheral nerve repair, clinical success is still limited, leaving millions to suffer from peripheral neuropathy with billions spent every year for treatment. Nerve repair methods that are capable of maximizing the regenerative properties of peripheral nerves are greatly desired in the field of medical science. This research aims to fill the gap between modern methods and the future of nerve repair by creating type-I collagen scaffolds with aligned degradation pores that will assist and nurture nerves growing through them. This is achieved by incorporating adipose stem cells into type-I collagen hydrogels and aligning …


Nanocellulose Conduits For Enhanced Regeneration Of Peripheral Nerve Injuries, Nicklaus R. Carter May 2021

Nanocellulose Conduits For Enhanced Regeneration Of Peripheral Nerve Injuries, Nicklaus R. Carter

Electronic Theses and Dissertations

Peripheral neuropathy is estimated to afflict 20 million people in the United States. Most cases of neuropathy result from physical injuries and trauma arising from automobile accidents and war. Peripheral nerves have the intrinsic ability to regenerate over time, bridging the injury gap. However native regeneration is limited to a distance of only a few millimeters. Current methods utilized to assist in the regeneration of peripheral nerves over distances exceeding those amenable to native repair include nerve autografts and allografts, and implantation of conduits. Nerve autografts are regarded as the most effective method but require a second surgical site to …


Evaluating The Effects Of Wood Source On The Physicochemical Properties Of Crosslinked Cellulose Nanocrystals, Helena Tchoungang Nkeumen May 2021

Evaluating The Effects Of Wood Source On The Physicochemical Properties Of Crosslinked Cellulose Nanocrystals, Helena Tchoungang Nkeumen

Graduate Theses and Dissertations

Cellulose is an abundant and naturally occurring biopolymer that has been used by humans for food, shelter, and clothing for about two centuries now. Highly crystalline nanoparticles derived from cellulose, called cellulose nanocrystals (CNCs), show great potential to meet the rising need for sustainable and nontoxic materials for biomedical applications. However, multiple biomedical applications of CNCs, such as those involving their use in tissue engineering scaffolds, require CNC-based structures to be stable in aqueous environments, a property that native CNCs do not possess due to their inherent hydrophilicity. Chemical crosslinking of CNCs addresses this issue by providing aqueous stability to …


Performance And Economics Of Solar Inverters And Module Level Power Electronics In A 1 Mw Photovoltaic System, Maxwell Criswell May 2021

Performance And Economics Of Solar Inverters And Module Level Power Electronics In A 1 Mw Photovoltaic System, Maxwell Criswell

Biological and Agricultural Engineering Undergraduate Honors Theses

Photovoltaic solar panels convert sunlight to electricity in the form of direct current; therefore, a necessary component of every photovoltaic system is an inverter to convert the electricity to usable alternating current. There are various commercially available inverter technologies manufactured today such as microinverters, string inverters, and central inverters, as well as module level power electronic devices such as DC optimizers that are capable of improving system performance in string and central inverter systems. This thesis compares the performance and economics of five different inverter and module level power electronic systems through model simulation using Helioscope software. The five alternatives …


Biomethanation And Alkaline Wet Air Oxidation Of Water Hyacinth (Pontederia Crassipes) From Ozama River, Dominican Republic, Yessica A. Castro May 2021

Biomethanation And Alkaline Wet Air Oxidation Of Water Hyacinth (Pontederia Crassipes) From Ozama River, Dominican Republic, Yessica A. Castro

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Obtaining valuable products from environmental remediation waste is a sustainable approach that contributes to the ecological well-being of developing countries. In the present work, the feasibility of the water hyacinth anaerobic digestion as a post-weed management practice in the Ozama River (Dominican Republic) was demonstrated. The estimated energy required for harvesting was lower than that produced during digestion. The biomethanation of water hyacinth was improved by Alkaline Wet Air Oxidation (AWAO), a thermochemical pretreatment process that almost doubled the methane production rate and increased the yield by 24% when conducted at high temperatures. At lower temperatures, the methane yield of …