Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biological Engineering

Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier Jun 2014

Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier

Andrew C. Hillier

The influence of oxidation state on the permeability of several probe molecules through conducting polymer membranes comprising composites of poly(aniline) and poly(styrenesulfonate) was examined in aqueous solution. Pure poly(aniline) membranes displayed a characteristic increase in permeability between reduced and half-oxidized states for neutrally charged phenol and negatively charged 4-hydroxybenzenesulfonate. In contrast, positively charged pyridine experienced decreased permeability through the membrane when poly(aniline) was switched from the reduced to the half-oxidized state. This behavior can be explained by a combination of oxidation-induced film swelling and the anion-exchange character of the positively charged membrane. The membrane composition was modified to include a …


Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier Jun 2014

Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier

Andrew C. Hillier

The influence of a surface potential gradient on the location and extent of electrochemical reactions was examined using a scanning electrochemical microscope. A linear potential gradient was imposed on the surface of a platinum-coated indium tin oxide electrode by applying two different potential values at the edges of the electrode. The applied potentials were used to control the location and extent of several electrochemical reactions, including the oxidation of Ru(NH3)62+, the oxidation of H2, and the oxidation of H2 in the presence of adsorbed CO. Scanning electrochemical mapping of these reactions was achieved by probing the feedback current associated with …


High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier Jun 2014

High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier

Andrew C. Hillier

We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer. This inlet provides extremely rapid mass detection as well as a high flux of products from the electrode surface into the mass spectrometer. …


Fabrication Of Low-Cost Paper-Based Microfluidic Devices By Embossing Or Cut-And-Stack Methods, Martin M. Thuo, Ramses V. Martinez, Wen-Jie Lan, Xinyu Liu, Jabulani Barber, Manza B. Atkinson, Dineth Bandarage, Jean-Francis Bloch, George M. Whitesides Jun 2014

Fabrication Of Low-Cost Paper-Based Microfluidic Devices By Embossing Or Cut-And-Stack Methods, Martin M. Thuo, Ramses V. Martinez, Wen-Jie Lan, Xinyu Liu, Jabulani Barber, Manza B. Atkinson, Dineth Bandarage, Jean-Francis Bloch, George M. Whitesides

Martin M. Thuo

This article describes the use of embossing and “cut-and-stack” methods of assembly, to generate microfluidic devices from omniphobic paper and demonstrates that fluid flowing through these devices behaves similarly to fluid in an open-channel microfluidic device. The porosity of the paper to gases allows processes not possible in devices made using PDMS or other nonporous materials. Droplet generators and phase separators, for example, could be made by embossing “T”-shaped channels on paper. Vertical stacking of embossed or cut layers of omniphobic paper generated three-dimensional systems of microchannels. The gas permeability of the paper allowed fluid in the microchannel to contact …


Mox/Cnts Hetero-Structures For Gas Sensing Applications: Role Of Cnts Defects, G. Neri, S. G. Leonardi, N. Donato, C. Marichy, Jean-Philippe Tessonnier, M.-G. Willinger, Kyeong-Hwan Lee, N. Pinna Jan 2012

Mox/Cnts Hetero-Structures For Gas Sensing Applications: Role Of Cnts Defects, G. Neri, S. G. Leonardi, N. Donato, C. Marichy, Jean-Philippe Tessonnier, M.-G. Willinger, Kyeong-Hwan Lee, N. Pinna

Jean-Philippe Tessonnier

The preparation, characterization and sensing properties of CNT composites with a thin metal oxide (MOx) surface layer is presented. Atomic layer deposition (ALD) was applied for the coating of the inner and outer CNTs walls with thin films of ZnO and SnO2 of precisely controlled thicknesses. Differently treated CNTs with different degree of surface functionalization were used as support for the oxide films. The sensing properties of the obtained composite materials towards NO2 were investigated and related to the morphological and microstructural characteristics of both the coating and support. SnO2-based composites on CNTs treated at 700 °C show enhanced performance …


Labeling And Monitoring The Distribution Of Anchoring Sites On Functionalized Cnts By Atomic Layer Deposition, Catherine Marichy, Jean-Philippe Tessonnier, Marta C. Ferro, Kyeong-Hwan Lee, Robert Schlogl, Nicola Pinna, Marc-Georg Willinger Jan 2012

Labeling And Monitoring The Distribution Of Anchoring Sites On Functionalized Cnts By Atomic Layer Deposition, Catherine Marichy, Jean-Philippe Tessonnier, Marta C. Ferro, Kyeong-Hwan Lee, Robert Schlogl, Nicola Pinna, Marc-Georg Willinger

Jean-Philippe Tessonnier

The chemical inertness of graphite and, in the case of tubes, of rolled up few layer graphene sheets, requires some degree of "defect engineering" for the fabrication of carbon based heterostructured materials. It is shown that atomic layer deposition provides a means to specifically label anchoring sites and can be used to characterize the surface functionality of differently treated carbon nanotubes. Direct observation of deposited titania by analytical transmission electron microscopy reveals the location and density of anchoring sites as well as structure related concentrations of functional groups on the surface of the tubes. Controlled functionalization of the tubes therefore …