Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Astrodynamics

Trajectory Optimization For A Misson To The Trojan Asteroids, Shivaji Senapati Gadsing Aug 2014

Trajectory Optimization For A Misson To The Trojan Asteroids, Shivaji Senapati Gadsing

Masters Theses

The problem of finding a minimum-fuel trajectory for a mission to the Jovian Trojan asteroids is considered. The problem is formulated as a modified traveling salesman problem. Two different types of algorithms such as an exhaustive search algorithm and a serial rendezvous search algorithm are developed. The General Mission Analysis Tool (GMAT) is employed for finding optimum trajectories with minimal fuel consumption. The selection of a minimum-fuel mission trajectory, and the associated target asteroids, will be a key factor in determining feasibility and scientific value of a Trojan tour and rendezvous mission.

The transfer trajectory followed by a spacecraft between …


Feasibility Of Cubesat Formation Flight Using Rotation To Achieve Differential Drag, Skyler M. Shuford Jun 2013

Feasibility Of Cubesat Formation Flight Using Rotation To Achieve Differential Drag, Skyler M. Shuford

Aerospace Engineering

This paper presents the results of a study conducted to understand the feasibility of CubeSat formation flight. The mechanism for separation and formation studied was differential drag, achieved by rotating the CubeSats to give them different cross-sectional areas. Intuitively, lower altitude orbits provide much higher separation effects. Although the most influential orbital effects occur with maximum and minimum cross-sectional areas, an attitude-controlled and a tumbling CubeSat may provide enough differential drag to meet separation requirements of a mission. Formation flight is possible, but due to the non-linearity of the system, gain scheduling may be the most effective method of long …


Computation Time Comparison Between Matlab And C++ Using Launch Windows, Tyler Andrews Jun 2012

Computation Time Comparison Between Matlab And C++ Using Launch Windows, Tyler Andrews

Aerospace Engineering

Processing speed between Matlab and C++ was compared by examining launch windows and handling large amounts of data found in pork chop plots. A compilation of code was generated in Matlab to produce the plots and an identical file was created in C++ that was then compiled and run in Matlab to plot the data. This file is known as a MEX-file. This report outlines some of the basics when working with MEX-files and the problems that face users. For Lambert’s solver, multi revolution cases were considered and some pork chop plots of single revolution trajectories were plotted. Three different …


Accelerating Lambert's Problem On The Gpu In Matlab, Nathan Parrish Jun 2012

Accelerating Lambert's Problem On The Gpu In Matlab, Nathan Parrish

Aerospace Engineering

The challenges and benefits of using the GPU to compute solutions to Lambert’s Problem are discussed. Three algorithms (Universal Variables, Gooding’s algorithm, and Izzo’s algorithm) were adapted for GPU computation directly within MATLAB. The robustness of each algorithm was considered, along with the speed at which it could be computed on each of three computers. All algorithms used were found to be completely robust. Computation time was measured for computation within a for-loop, a parfor-loop, and a call to the MATLAB command ‘arrayfun’ with gpuArray-type inputs. Then, a Universal Variables Lambert’s solver was written in CUDA and compiled for use …