Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Astrodynamics

Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad Dec 2011

Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad

Master's Theses

The paper describes the background and concepts behind a master’s thesis platform known as COMET (Constrained Optimization of Multiple-dimensions for Efficient Trajectories) created for mission designers to determine and evaluate suitable interplanetary trajectories. This includes an examination of the improvements to the global optimization algorithm, Differential Evolution, through a cascading search space pruning method and decomposition of optimization parameters. Results are compared to those produced by the European Space Agency’s Advanced Concept Team’s Multiple Gravity Assist Program. It was found that while discrepancies in the calculation of ΔV’s for flyby maneuvers exist between the two programs, COMET showed a noticeable …


Global Optimization Of Mga-Dsm Problems Using The Interplanetary Gravity Assist Trajectory Optimizer (Igato), Jason M. Bryan Dec 2011

Global Optimization Of Mga-Dsm Problems Using The Interplanetary Gravity Assist Trajectory Optimizer (Igato), Jason M. Bryan

Master's Theses

Interplanetary multiple gravity assist (MGA) trajectory optimization has long been a field of interest to space scientists and engineers. Gravity assist maneuvers alter a spacecraft's velocity vector and potentially allow spacecraft to achieve changes in velocity which would otherwise be unfeasible given our current technological limitations. Unfortunately, designing MGA trajectories is difficult and in order to find good solutions, deep space maneuvers (DSM) are often required which further increase the complexity of the problem. In addition, despite the active research in the field over the last 50 years, software for MGA trajectory optimization is scarce. A few good commercial, and …


Formulation Of An Optimal Search Strategy For Space Debris At Geo, Daniel J. Jackson Nov 2011

Formulation Of An Optimal Search Strategy For Space Debris At Geo, Daniel J. Jackson

Master's Theses

The purpose of this thesis is to create a search strategy to find orbital debris when the object fails to appear in the sky at its predicted location. This project is for NASA Johnson Space Center Orbital Debris Program Office through the MODEST (Michigan Orbital Debris Survey Telescope) program. This thesis will build upon the research already done by James Biehl in “Formulation of a Search Strategy for Space Debris at GEO.” MODEST tracks objects at a specific right ascension and declination. A circular orbit assumption is then used to predict the location of the object at a later time. …


An Analysis Of Stabilizing 3u Cubesats Using Gravity Gradient Techniques And A Low Power Reaction Wheel, Erich Bender Jun 2011

An Analysis Of Stabilizing 3u Cubesats Using Gravity Gradient Techniques And A Low Power Reaction Wheel, Erich Bender

Aerospace Engineering

The purpose of this paper is to determine the feasibility of gravity gradient stabilizing a 3U CubeSat and then using a miniature reaction wheel to further increase stability characteristics. This paper also serves as a guide to understanding and utilizing quaternions in attitude control analysis. The analytical results show that using 33 centimeter booms and 400 gram tip masses, a 3U CubeSat will experience a maximum of 6 degrees of angular displacement in yaw and pitch, and less than .5 degrees of angular displacement in the nadir axis. A .120 kilogram miniature reaction wheel developed by Sinclair Interplanetary was introduced …


An Analysis Of N-Body Trajectory Propagation, Emerson Frees Ii Jun 2011

An Analysis Of N-Body Trajectory Propagation, Emerson Frees Ii

Aerospace Engineering

Trajectories created with n-body orbit models were propagated in geocentric and interplanetary test cases. The n-body models were created in MATLAB® using numerical integration. In the geocentric test case, the n-body codes were compared to a two-body orbit model and to the default HPOP model used in Satellite Tool Kit®. The interplanetary test case compared the n-body model to the HORIZONS ephemeris data from JPL and an equation for ephemeris propagation. Both cases used the same initial positions and velocities and were propagated for the same duration. The results of the analysis showed that while n-body models …


Design, Fabrication, And Testing Of An Electromagnetic Rail Gun For The Repeated Testing And Simulation Of Orbital Debris Impacts, Jeff Maniglia, Jordan Smiroldo, Alex Westfall, Guy Zohar Jun 2011

Design, Fabrication, And Testing Of An Electromagnetic Rail Gun For The Repeated Testing And Simulation Of Orbital Debris Impacts, Jeff Maniglia, Jordan Smiroldo, Alex Westfall, Guy Zohar

Aerospace Engineering

An Electromagnetic Railgun (EMRG) was designed, built, and tested, capable of firing a projectile a 1 gram projectile at 650 m/s muzzle velocity. The EMRG utilizes an injector, a high voltage power supply, a capacitor bank, inductors and rails. The injector fires 2300 psig Nitrogen gas into the system to provide an initial velocity. The high voltage power supply charges the capacitor bank. The capacitor bank discharges the electric potential built up through the projectile while inside the rails in order to create the EMRG’s force. The inductors are used to pulse form the capacitor bank in order to get …


Development And Analysis Of Onboard Translunar Injection Targeting Algorithms, Phillippe Lyles Winters Reed May 2011

Development And Analysis Of Onboard Translunar Injection Targeting Algorithms, Phillippe Lyles Winters Reed

Masters Theses

Several targeting algorithms are developed and analyzed for possible future use onboard a spacecraft. Each targeter is designed to determine the appropriate propulsive burn for translunar injection to obtain desired orbital parameters upon arrival at the moon. Primary design objectives are to minimize the computational requirements for each algorithm but also to ensure reasonable accuracy, so that the algorithm’s errors do not force the craft to conduct large mid-course corrections. Several levels of accuracy for dynamical models are explored, the convergence range and speed of each algorithm are compared, and the possible benefits of the Broyden and trust-region targeters are …


Mapping Galileo's Trajectory, Mark Woods Jan 2011

Mapping Galileo's Trajectory, Mark Woods

Aerospace Engineering

The NASA Galileo mission was mapped out using a patched conics approximation. Galileo launched from Earth, underwent a gravity assist from Venus back to Earth for another gravity assist. Galileo then came back to Earth for one more gravity assist to propel it to Jupiter. A simulation ignoring all perturbations (i.e. third body effects, zonal (harmonics, solar wind, drag) was carried out. The simulation was able to make it to the final Earth flyby before diverging from the actual trajectory. The simulated and actual flyby dates all differed by less than 5 hours, and the simulated and actual flyby altitudes …