Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Master's Theses

Discipline
Keyword
Publication Year

Articles 1 - 30 of 46

Full-Text Articles in Astrodynamics

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga Jun 2023

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga

Master's Theses

On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure.

This research leverages a distributed control approach, …


Spacecraft Trajectory Optimization Suite: Fly-Bys With Impulsive Thrust Engines (Stops-Flite), Aaron H. Li Jun 2022

Spacecraft Trajectory Optimization Suite: Fly-Bys With Impulsive Thrust Engines (Stops-Flite), Aaron H. Li

Master's Theses

Spacecraft trajectory optimization is a near-infinite problem space with a wide variety of models and optimizers. As trajectory complexity increases, so too must the capabilities of modern optimizers. Common objective cost functions for these optimizers include the propellant utilized by the spacecraft and the time the spacecraft spends in flight. One effective method of minimizing these costs is the utilization of one or multiple gravity assists. Due to the phenomenon known as the Oberth effect, fuel burned at a high velocity results in a larger change in orbital energy than fuel burned at a low velocity. Since a spacecraft is …


On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez Dec 2021

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez

Master's Theses

Maintaining Space Domain Awareness (SDA) of satellites in low Earth orbit (LEO) requires effective methods of tracking and characterization. Optical measurements of these objects are generally sparse due to limited access intervals and high angular rates. Light pollution and geographic obstructions may also preclude consistent observations. However, a mobile small aperture telescope grants the ability to minimize such environmental effects, thereby increasing capture likelihoods for objects within this regime. By enhancing LEO satellite visibility in this way, extensive orbital and visual data are obtainable.

An 8-inch Meade LX200GPS telescope equipped with a Lumenera SKYnyx2-0M CCD camera comprises the system that …


Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa Dec 2021

Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa

Master's Theses

A light curve is a plot of brightness versus time of an object. Light curves are dependent on orbit, attitude, surface area, size, and shape of the observed object. Using light curve data, several analysis methods have been developed to derive these parameters. These parameters can be used for tracking orbital debris, monitoring satellite health, and determining the mission of an unknown spacecraft.

This paper discusses the development, verification, and utilization of a tool that simulates light curve data. This tool models ground-based observations, space-based observations, self-shadowing geometry, tumbling debris, and controlled spacecraft. The main output from the tool is …


Optimization Of Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Ryan Yedinak Sep 2021

Optimization Of Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Ryan Yedinak

Master's Theses

Traditionally, two-body dynamics have been used to design orbital trajectories for interplanetary missions using a series of Lambert’s transfers and gravity assists. Although these are reliable methods, they have extremely high fuel requirements, especially for missions to outer planets. From an orbital mechanics perspective, three ways of reducing fuel requirements for these types of missions are utilizing low energy transfer trajectories, applying low thrust engine parameters, and implementing orbit optimization techniques.

The goal of this thesis is to combine low energy transfers created from the dynamics of the Circular Restricted Three-Body Problem (CRTBP) with low-thrust orbit optimization techniques to develop …


Passive Disposal Of Launch Vehicle Stages In Geostationary Transfer Orbits Leveraging Small Satellite Technologies, Marc Alexander Galles Jun 2021

Passive Disposal Of Launch Vehicle Stages In Geostationary Transfer Orbits Leveraging Small Satellite Technologies, Marc Alexander Galles

Master's Theses

Once a satellite has completed its operational period, it must be removed responsibly in order to reduce the risk of impacting other missions. Geostationary Transfer Orbits (GTOs) offer unique challenges when considering disposal of spacecraft, as high eccentricity and orbital energy give rise to unique challenges for spacecraft designers. By leveraging small satellite research and integration techniques, a deployable drag sail module was analyzed that can shorten the expected orbit time of launch vehicle stages in GTO. A tool was developed to efficiently model spacecraft trajectories over long periods of time, which allowed for analysis of an object’s expected lifetime …


Interplanetary Trajectory Optimization With Automated Fly-By Sequences, Emily Ann Doughty Dec 2020

Interplanetary Trajectory Optimization With Automated Fly-By Sequences, Emily Ann Doughty

Master's Theses

Critical aspects of spacecraft missions, such as component organization, control algorithms, and trajectories, can be optimized using a variety of algorithms or solvers. Each solver has intrinsic strengths and weaknesses when applied to a given optimization problem. One way to mitigate limitations is to combine different solvers in an island model that allows these algorithms to share solutions. The program Spacecraft Trajectory Optimization Suite (STOpS) is an island model suite of heterogeneous and homogeneous Evolutionary Algorithms (EA) that analyze interplanetary trajectories for multiple gravity assist (MGA) missions. One limitation of STOpS and other spacecraft trajectory optimization programs (GMAT and Pygmo/Pagmo) …


Spacecraft Trajectory Optimization Suite (Stops): Design And Optimization Of Multiple Gravity-Assist Low-Thrust (Mgalt) Trajectories Using Modern Optimization Techniques, Michael G. Malloy Dec 2020

Spacecraft Trajectory Optimization Suite (Stops): Design And Optimization Of Multiple Gravity-Assist Low-Thrust (Mgalt) Trajectories Using Modern Optimization Techniques, Michael G. Malloy

Master's Theses

The information presented in the thesis is a continuation of the Spacecraft Trajectory Optimization Suite (STOpS). This suite was originally designed and developed by Timothy Fitzgerald and further developed by Shane Sheehan, both graduate students at California Polytechnic State University, San Luis Obispo. Spacecraft utilizing low-thrust transfers are becoming more and more common due to their efficiency on interplanetary trajectories, and as such, finding the most optimal trajectory between two planets is something of interest. The version of STOpS presented in this thesis uses Multiple Gravity-Assist Low-Thrust (MGALT) trajectories paired with the island model paradigm to accomplish this goal. The …


B-Plane Targeting With The Spacecraft Trajectory Optimization Suite, Jared Graef Dec 2020

B-Plane Targeting With The Spacecraft Trajectory Optimization Suite, Jared Graef

Master's Theses

In interplanetary trajectory applications, it is common to design arrival trajectories based on B-plane target values. This targeting scheme, B-plane targeting, allows for specific target orbits to be obtained during mission design. A primary objective of this work was to implement B-plane targeting into the Spacecraft Trajectory Optimization Suite (STOpS). This work was based on the previous versions of STOpS done by Fitzgerald and Sheehan, however STOpS was redeveloped from MATLAB to python. This updated version of STOpS implements 3-dimensional computation, departure and arrival orbital phase modeling with patched conics, B-plane targeting, and a trajectory correction maneuver. The optimization process …


Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii Dec 2020

Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii

Master's Theses

The following thesis regards the use of small aperture telescopes for space domain awareness efforts. The rapidly populating space domain was motivation for the development of a new operation scheme to conduct space domain awareness feasibility studies using small telescopes. Two 14-inch Schmidt-Cassegrain Telescopes at the California Polytechnic State University and the Air Force Research Lab in Kirtland AFB, NM, in conjunction with a dedicated CCD camera and a commercial DSLR camera, were utilized to conduct optical observations on satellites in Earth orbit.

Satellites were imaged during August 2019, and from January 2020 to March 2020, resulting in the collection …


Limitations Of Initial Orbit Determination Methods For Low Earth Orbit Cubesats With Short Arc Orbital Passes, James P. Johnson Jul 2020

Limitations Of Initial Orbit Determination Methods For Low Earth Orbit Cubesats With Short Arc Orbital Passes, James P. Johnson

Master's Theses

This thesis will focus on the performance of angles only initial orbit determi- nation (IOD) methods on observational data of low Earth orbit (LEO) CubeSats. Using data obtained by Lockheed Martin’s Space Object Tracking (SpOT) facil- ity, four methods: Gauss, Double-R, Gooding and Assumed Circular, will use different amounts of orbital arc to determine which methods perform the best in the short arc regime of less than 10 degrees of orbital arc. Once the best method for estimating the orbit is determined, there will be analysis on whether these IOD methods are accurate enough to predict a secondary observation session. …


Initial Orbit Determination Error Analysis Of Low-Earth Orbit Rocket Body Debris And Feasibility Study For Debris Cataloguing From One Optical Facility, Kyle Stoker Jun 2020

Initial Orbit Determination Error Analysis Of Low-Earth Orbit Rocket Body Debris And Feasibility Study For Debris Cataloguing From One Optical Facility, Kyle Stoker

Master's Theses

This paper is predicated on determining the effectiveness of angles-only initial orbit determination (IOD) methods when limited observational data is available for low-Earth orbit (LEO) rocket body debris. The analysis will be conducted with data obtained from Lockheed Martin Space’s Space Object Tracking (SpOT) facility, focusing on their observational data from 2018 that contains tracking of rocket body debris for less than one minute per overhead pass. After the IOD accuracies are better understood, a feasibility study will follow that investigates the possibility of cataloguing LEO orbital debris from a single optical observation facility with similar observational capabilities as that …


Navigational Feasibility Of Flyby / Impact Missions To Interstellar Objects, Declan Moore Mages Dec 2019

Navigational Feasibility Of Flyby / Impact Missions To Interstellar Objects, Declan Moore Mages

Master's Theses

In October 2017, the first interstellar object, designated 1I/2017 U1 and more commonly referred to as Oumuamua, was detected passing through our solar system by the Pan-STARRS telescope, followed recently by the detection of 2I/Borisov in August 2019. These detections came much sooner than thought possible, and have redefined our understanding of the population of interstellar objects. With the construction of the next generation of powerful observatories, future detections are estimated to occur as frequently as two per year, and while there is significant scientific understanding to be gained from observing these objects remotely, a spacecraft sent to intercept one …


Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles Dec 2019

Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles

Master's Theses

Collision with orbital debris poses a serious threat to spacecraft and astronauts. Hypervelocity impacts resulting from collisions mean that objects with a mass less than 1g can cause mission-ending damage to spacecraft. A means of shielding spacecraft against collisions is necessary. A means of testing candidate shielding methods for their efficacy in mitigating hypervelocity impacts is therefore also necessary. Cal Poly’s Electromagnetic Railgun was designed with the goal of creating a laboratory system capable of simulating hypervelocity (≥ 3 km/s) impacts. Due to several factors, the system was not previously capable of high-velocity (≥ 1 km/s) tests. A deficient projectile …


Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman Dec 2018

Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman

Master's Theses

The purpose of this thesis is to design a machine learning algorithm platform that provides expanded knowledge of mission availability through a launch season by improving trajectory resolution and introducing launch mission forecasting. The specific scenario addressed in this paper is one in which data is provided for four deterministic translational maneuvers through a mission to a Near Rectilinear Halo Orbit (NRHO) with a 9:2 synodic frequency. Current launch availability knowledge under NASA’s Orion Orbit Performance Team is established by altering optimization variables associated to given reference launch epochs. This current method can be an abstract task and relies on …


Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Megan S. Rund Jun 2018

Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Megan S. Rund

Master's Theses

Throughout the history of interplanetary space travel, the Newtonian dynamics of the two-body problem have been used to design orbital trajectories to traverse the solar system. That is, that a spacecraft orbits only one large celestial body at a time. These dynamics have produced impressive interplanetary trajectories utilizing numerous gravity assists, such as those of Voyager, Cassini, Rosetta and countless others. But these missions required large amounts of delta-v for their maneuvers and therefore large amounts of fuel mass. As we desire to travel farther and more extensively in space, these two-body dynamics lead to impossibly high delta-v values, and …


Thermal Vacuum Chamber Refurbishment And Analysis, Adrian Michael Williams Jun 2018

Thermal Vacuum Chamber Refurbishment And Analysis, Adrian Michael Williams

Master's Theses

Spacecraft are subject to different environments while on orbit around the Earth and beyond. One of the most critical of these environments that must be counteracted is the thermal environment. Each spacecraft has an operating temperature that is specified in the mission requirements. The requirement stems from internal component operating temperatures that are critical to mission success. Prior to placing the spacecraft in orbit, engineers must be sure that the spacecraft will survive or risk losing the mission entirely.

The primary way to mitigate this risk is to use a thermal vacuum chamber (TVAC). The chamber is designed to resemble …


Exploring The Concept Of A Deep Space Solar-Powered Small Spacecraft, Kian Guillaume Crowley Jun 2018

Exploring The Concept Of A Deep Space Solar-Powered Small Spacecraft, Kian Guillaume Crowley

Master's Theses

New Horizons, Voyager 1 & 2, and Pioneer 10 & 11 are the only spacecraft to ever venture past Pluto and provide information about space at those large distances. These spacecraft were very expensive and primarily designed to study planets during gravitational assist maneuvers. They were not designed to explore space past Pluto and their study of this environment is at best a secondary mission. These spacecraft rely on radioisotope thermoelectric generators (RTGs) to provide power, an expensive yet necessary approach to generating sufficient power. With Cubesats graduating to interplanetary capabilities, such as the Mars-bound MarCO spacecraft, matching the modest …


Use Of Manifolds In The Insertion Of Ballistic Cycler Trajectories, Oliver K. Morrison Jun 2018

Use Of Manifolds In The Insertion Of Ballistic Cycler Trajectories, Oliver K. Morrison

Master's Theses

Today, Mars is one of the most interesting and important destinations for humankind and copious methods have been proposed to accomplish these future missions. One of the more fascinating methods is the Earth-Mars cycler trajectory which is a trajectory that accomplishes repeat access to Earth and Mars with little to no fuel-burning maneuvers. This would allow fast travel to and from Mars, as well as grant the possibility of multiple missions using the same main vehicle.

Insertion from Earth-orbit onto the cycler trajectory has not been thoroughly ex- plored and the only existing method so far is a Hohmann-esque transfer …


Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano Jun 2018

Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano

Master's Theses

Recent interest surrounding large scale satellite constellations has increased analysis efforts to create the most efficient designs. Multiple studies have successfully optimized constellation patterns using equations of motion propagation methods and genetic algorithms to arrive at optimal solutions. However, these approaches are computationally expensive for large scale constellations, making them impractical for quick iterative design analysis. Therefore, a minimalist algorithm and efficient computational method could be used to improve solution times. This thesis will provide a tool for single target constellation optimization using spherical trigonometry propagation, and an evolutionary genetic algorithm based on a multi-objective optimization function. Each constellation will …


Mass Estimation Through Fusion Of Astrometric And Photometric Data Collection With Application To High Area-To-Mass Ratio Objects, Matthew Richardson Jun 2017

Mass Estimation Through Fusion Of Astrometric And Photometric Data Collection With Application To High Area-To-Mass Ratio Objects, Matthew Richardson

Master's Theses

This thesis work presents the formulation for a tool developed in MATLAB to determine the mass of a space object from the fusion of astrometric and photometric data. The application for such a tool is to better model the mass estimation method used for high area-to-mass ratio objects found in high altitude orbit regimes. Typically, the effect of solar radiation pressure is examined with angles observations to deduce area-to-mass ratio calculations for space objects since the area-to-mass ratio can greatly affect its orbital dynamics. On the other hand, photometric data is not sensitive to mass but is a function of …


The Collisional Evolution Of Orbital Debris In Geopotential Wells And Disposal Orbits, Benjamin Polzine Mar 2017

The Collisional Evolution Of Orbital Debris In Geopotential Wells And Disposal Orbits, Benjamin Polzine

Master's Theses

This thesis investigates the orbital debris evolution in the geosynchronous disposal orbit regime and within geosynchronous orbits effected by the geopotential wells. A propagator is developed for the accurate simulation of GEO specific orbits and the required perturbations are determined and described. Collisions are then simulated in the selected regimes using a low velocity breakup model derived from the NASA EVOLVE breakup model. The simulations described in this thesis consider a set of perturbations including the geopotential, solar and lunar gravity, and solar radiation pressure forces. This thesis is based on a prior paper and additionally seeks to address an …


Orbital Determination Feasibility Of Leo Nanosatellites Using Small Aperture Telescopes, Michael R. Strange Mar 2017

Orbital Determination Feasibility Of Leo Nanosatellites Using Small Aperture Telescopes, Michael R. Strange

Master's Theses

This thesis is directed toward the feasibility of observing satellites on the nano scale and determining an accurate propagated orbit using a Meade LX600-ACF 14” diameter aperture telescope currently located on the California Polytechnic State University campus. The optical telescope is fitted with an f/6.3 focal reducer, SBIG ST-10XME CCD camera and Optec TCF-S Focuser. This instrumentation allowed for a 22’ X 15’ arcminute FOV in order to accurately image passing LEO satellites. Through the use of the Double-r and Gauss Initial Orbit Determination methods as well as Least Squared Differential Correction and Extended Kalman Filter Orbit Determination methods, an …


A Solution To The Circular Restricted N Body Problem In Planetary Systems, Jay R. Iuliano Jun 2016

A Solution To The Circular Restricted N Body Problem In Planetary Systems, Jay R. Iuliano

Master's Theses

This thesis is a brief look at a new solution to a problem that has been approached in many different ways in the past - the N body problem. By focusing on planetary systems, satellite dynamics can be modeled in a fashion similar to the Circular Restricted Three Body Problem (CR3BP) with the Circular Restricted N Body Problem (CRNBP). It was found that this new formulation of the dynamics can then utilize the tools created from all the research into the CR3BP to reassess the possibility of different complex trajectories in systems where there are more than just two large …


Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa Jun 2016

Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa

Master's Theses

Due to mass and volume constraints on planetary missions, the development of control techniques that do not require fuel are of big interest. For those planets that have a dense enough atmosphere, aerodynamic drag can play an important role. The use of atmospheric differential drag for formation keeping was first proposed by Carolina L. Leonard in 1986, and has been proven to work in Earth atmosphere by many missions. Moreover, atmospheric drag has been used in the Mars atmosphere as aerobraking technique to decelerate landing vehicles, and to circularize the orbit of the spacecraft. Still, no literature was available related …


Spacecraft Trajectory Optimization Suite (Stops): Optimization Of Multiple Gravity Assist Spacecraft Trajectories Using Modern Optimization Techniques, Timothy J. Fitzgerald Dec 2015

Spacecraft Trajectory Optimization Suite (Stops): Optimization Of Multiple Gravity Assist Spacecraft Trajectories Using Modern Optimization Techniques, Timothy J. Fitzgerald

Master's Theses

In trajectory optimization, a common objective is to minimize propellant mass via multiple gravity assist maneuvers (MGAs). Some computer programs have been developed to analyze MGA trajectories. One of these programs, Parallel Global Multiobjective Optimization (PaGMO), uses an interesting technique known as the Island Model Paradigm. This work provides the community with a MATLAB optimizer, STOpS, that utilizes this same Island Model Paradigm with five different optimization algorithms. STOpS allows optimization of a weighted combination of many parameters. This work contains a study on optimization algorithm performance and how each algorithm is affected by its available settings.

STOpS successfully found …


A Pareto-Frontier Analysis Of Performance Trends For Small Regional Coverage Leo Constellation Systems, Christopher Alan Hinds Dec 2014

A Pareto-Frontier Analysis Of Performance Trends For Small Regional Coverage Leo Constellation Systems, Christopher Alan Hinds

Master's Theses

As satellites become smaller, cheaper, and quicker to manufacture, constellation systems will be an increasingly attractive means of meeting mission objectives. Optimizing satellite constellation geometries is therefore a topic of considerable interest. As constellation systems become more achievable, providing coverage to specific regions of the Earth will become more common place. Small countries or companies that are currently unable to afford large and expensive constellation systems will now, or in the near future, be able to afford their own constellation systems to meet their individual requirements for small coverage regions.

The focus of this thesis was to optimize constellation geometries …


Analysis Of An Inflatable Gossamer Device To Efficiently De-Orbit Cubesats, Robert A. Hawkins Jr. Dec 2013

Analysis Of An Inflatable Gossamer Device To Efficiently De-Orbit Cubesats, Robert A. Hawkins Jr.

Master's Theses

There is an increased need for spacecraft to quickly and efficiently de-orbit themselves as the amount of debris in orbit around Earth grows. Defunct spacecraft pose a significant threat to the LEO environment due to their risk of fragmentation. If these spacecraft are de-orbited at the end of their useful life their risk to future spacecraft is greatly lessened. A proposed method of efficiently de-orbiting spacecraft is to use an inflatable thin-film envelope to increase the body's area to mass ratio and thusly shortening its orbital lifetime. The system and analysis presented in this project is sized for use on …


Investigation Into The Mitigation Of The Effects Of Uncertain Optical Degradation On An Interplanetary Solar Sail Mission Using A Single Model Update, Jordan Smiroldo Dec 2013

Investigation Into The Mitigation Of The Effects Of Uncertain Optical Degradation On An Interplanetary Solar Sail Mission Using A Single Model Update, Jordan Smiroldo

Master's Theses

The renewed academic interest in using solar sails as a source of spacecraft propulsion has been accompanied by a recent fervor of investigations into non-ideal and off-nominal sail performance considerations. One of the most influential considerations, uncertain optical degradation, has been shown to present significant trajectory design difficulties. This paper investigates the potential of using a mid-course degradation model update to mitigate the risk of missing the target destination in a sample 300 day Earth-Venus trajectory. Using a range of potential degradation profiles, it is shown that correcting in the first half of the mission is highly likely to result …


Attitude Estimation For A Gravity Gradient Momentum Biased Nanosatellite, Arash Mehrparvar Oct 2013

Attitude Estimation For A Gravity Gradient Momentum Biased Nanosatellite, Arash Mehrparvar

Master's Theses

Attitude determination and estimation algorithms are developed and implemented in simulation for the Exocube satellite currently under development by PolySat at Cal Poly. A mission requirement of ±5˚ of attitude knowledge has been flowed down from the NASA Goddard developed payload, and this requirement is to be met with a basic sensor suite and the appropriate algorithms. The algorithms selected in this work are TRIAD and an Extended Kalman Filter, both of which are placed in a simulation structure along with models for orbit propagation, spacecraft kinematics and dynamics, and sensor and reference vector models. Errors inherent from sensors, orbit …