Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Propulsion and Power

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 25 of 25

Full-Text Articles in Astrodynamics

Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands Dec 2023

Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands

Graduate Theses and Dissertations

ARKSAT-1 is a CubeSatellite (CubeSat) developed at the University of Arkansas and launched to the International Space Station on SpaceX mission SPX-27 launching from Kennedy Space Center as part of the NASA’s 8th CubeSat Launch Initiative CSLI-8. ARKSAT-1’s payload features a high-powered LED, the Solid State Inflatable Balloon (SSIB) deorbiting system applicable to small satellites, and a series of InfraRed and Visible cameras. To point the LED or take images of desired observational targets, the spacecraft will need to be able to determine its orientation within its orbit, as well as rotate. This will be achieved through the use of …


Project Scrappie (Clear Constellation), Jacob Bertram, Jacob Britt, Bill Ngo, Mike Diesing Dec 2021

Project Scrappie (Clear Constellation), Jacob Bertram, Jacob Britt, Bill Ngo, Mike Diesing

Senior Design Project For Engineers

Clear Constellation™ is a nationwide competition hosted by Rubicon® to combat the growing problem of space debris in Low Earth Orbit. Project Scrappie is our team’s solution to this problem. Scrappie is an autonomous apparatus will make use of Whipple shield technology to collide with debris at high velocities and effectively destroy the debris throughout selected orbital paths.


Small Unmanned Aircraft Systems Acoustic Analysis For Noninvasive Marine Mammal Response: An Exploratory Field Study, David Thirtyacre, Gennifer Brookshire, Sarah Callan, Brittany Arvizu, Patrick Sherman Jan 2021

Small Unmanned Aircraft Systems Acoustic Analysis For Noninvasive Marine Mammal Response: An Exploratory Field Study, David Thirtyacre, Gennifer Brookshire, Sarah Callan, Brittany Arvizu, Patrick Sherman

International Journal of Aviation, Aeronautics, and Aerospace

As in countless other fields of human endeavor, small unmanned aircraft systems (sUAS) have the potential to benefit pinniped (Pinnipedia; e.g., Phocidae [seals], Otariidae [sea lions], and Odobenidae [walruses]) response efforts. The employment of sUAS could give responders a close-up look at animals in distress in order to determine their condition as well as develop a response strategy. However, unlike other subjects that are regularly inspected by sUAS (e.g., croplands and civil infrastructure) pinnipeds may respond to the distinctive sound generated by small, multirotor sUAS. This reaction may include retreating into the water en masse, which could put …


Celebrating 90-Orbits Around The Sun, Stafford Air & Space Museum Sep 2020

Celebrating 90-Orbits Around The Sun, Stafford Air & Space Museum

Programs

In celebration of the 90th birthday of Oklahoma astronaut and aerospace legend, Gen. Thomas P. Stafford, the Stafford Air & Space Museum in Weatherford, Oklahoma is offering free admission on September 17th, 2020.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].


Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles Dec 2019

Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles

Master's Theses

Collision with orbital debris poses a serious threat to spacecraft and astronauts. Hypervelocity impacts resulting from collisions mean that objects with a mass less than 1g can cause mission-ending damage to spacecraft. A means of shielding spacecraft against collisions is necessary. A means of testing candidate shielding methods for their efficacy in mitigating hypervelocity impacts is therefore also necessary. Cal Poly’s Electromagnetic Railgun was designed with the goal of creating a laboratory system capable of simulating hypervelocity (≥ 3 km/s) impacts. Due to several factors, the system was not previously capable of high-velocity (≥ 1 km/s) tests. A deficient projectile …


An Afternoon With General Thomas P. Stafford, Stafford Air & Space Museum May 2019

An Afternoon With General Thomas P. Stafford, Stafford Air & Space Museum

Programs

An Afternoon with General Thomas P. Stafford

Sunday, May 19th, 2019 at 2:00 P.M. at the Weatherford High School Performing Arts Center.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].


Apollo 10, 50th Anniversary Gala, Stafford Air & Space Museum May 2019

Apollo 10, 50th Anniversary Gala, Stafford Air & Space Museum

Programs

The Apollo 10 50th Anniversary Gala was held on May 18th, 2019 at the Stafford Air & Space Museum in Weatherford, Oklahoma.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].


System Architecture Design And Development For A Reusable Lunar Lander, Chad Batten, Camille E. Bergin, Aaron Crigger, Darryl Harris, Gillian Suzanne Mcglothin May 2019

System Architecture Design And Development For A Reusable Lunar Lander, Chad Batten, Camille E. Bergin, Aaron Crigger, Darryl Harris, Gillian Suzanne Mcglothin

Chancellor’s Honors Program Projects

No abstract provided.


Aircraft-Runway Total Energy Measurement, Monitoring, Managing, Safety, And Control System And Method, Nihad E. Daidzic, Feb 2019

Aircraft-Runway Total Energy Measurement, Monitoring, Managing, Safety, And Control System And Method, Nihad E. Daidzic,

Aviation Department Publications

United States Patent, Patent Number US 10,202,204 B1, Date of Patent February 12, 2019.

A total runway safety system (TRSS) and method measures, monitors, manages, and informs flight crew on the progress of takeoffs and landings and of any hazardous runway conditions. In some embodiments, the TRSS measures, monitors, and informs flight crew of longitudinal and lateral runway tracks thus preventing overruns and veer-offs during takeoffs and landings. In some embodiments, backscatter of infrared laser beams emitted by the aircraft is used to evaluate groundspeed and the reflectivity of the runway surface to make estimates of the surface conditions, rough­ness …


Effect Of Chemical Reactions On The Fluidic Thrust Vectoring Of An Axisymmetric Nozzle, Rachid Chouicha, Mohamed Sellam, Said Bergheul Jan 2019

Effect Of Chemical Reactions On The Fluidic Thrust Vectoring Of An Axisymmetric Nozzle, Rachid Chouicha, Mohamed Sellam, Said Bergheul

International Journal of Aviation, Aeronautics, and Aerospace

Abstract:

During the last years, several thrust control systems of aerospace rocket engines have been developed. The fluidic thrust vectoring is one of them; it is simple in design and offers a substantial gain in weight and in performance. Most of studies related to this device were carried out with cold gas. It’s quite legitimate to expect that the thermophysical properties of the gases may affect considerably the flow behavior. Besides, the effects of reacting gases at high temperatures, under their effects all flow parameters like to vary.

This study aims to develop a new methodology that allows studying and …


Suborbital Spaceflight: A Student Team’S Plan To Send A Rocket To Space, Bryce Chanes, William Carpenter, Julio Benavides, Matthew Haslam, Brenda Haven Jan 2015

Suborbital Spaceflight: A Student Team’S Plan To Send A Rocket To Space, Bryce Chanes, William Carpenter, Julio Benavides, Matthew Haslam, Brenda Haven

Aviation / Aeronautics / Aerospace International Research Conference

The Eagle Space Flight Team was created with the goal of becoming the first undergraduate team to design, build, and launch a rocket capable of suborbital spaceflight. In order to achieve this goal, the team will have to design a rocket capable of atmospheric flight at speeds over Mach 5 and launch it on one of the largest amateur rocket motors ever made. Over the next three years, the team will progress towards accomplishing this feat through a series of incremental test flights. Before the space flight, the team will build three sub-scale rockets designed to reach altitudes of 30,000’, …


Could We Colonize Venus?, Nihad E. Daidzic Mar 2014

Could We Colonize Venus?, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Analysis Of An Inflatable Gossamer Device To Efficiently De-Orbit Cubesats, Robert A. Hawkins Jr. Dec 2013

Analysis Of An Inflatable Gossamer Device To Efficiently De-Orbit Cubesats, Robert A. Hawkins Jr.

Master's Theses

There is an increased need for spacecraft to quickly and efficiently de-orbit themselves as the amount of debris in orbit around Earth grows. Defunct spacecraft pose a significant threat to the LEO environment due to their risk of fragmentation. If these spacecraft are de-orbited at the end of their useful life their risk to future spacecraft is greatly lessened. A proposed method of efficiently de-orbiting spacecraft is to use an inflatable thin-film envelope to increase the body's area to mass ratio and thusly shortening its orbital lifetime. The system and analysis presented in this project is sized for use on …


Design Of Economical Upper Stage Hybrid Rocket Engine, Christopher R. Potter May 2013

Design Of Economical Upper Stage Hybrid Rocket Engine, Christopher R. Potter

Chancellor’s Honors Program Projects

No abstract provided.


Small Satellites With Micro-Propulsion For Communications With The Lunar South Pole Aitkens Basin, Samudra E. Haque, Jeremy Straub, David Whalen Mar 2013

Small Satellites With Micro-Propulsion For Communications With The Lunar South Pole Aitkens Basin, Samudra E. Haque, Jeremy Straub, David Whalen

Jeremy Straub

A lunar sample return mission to the Lunar South-Pole Aitkens Basin (LSPAB) has been highlighted as a high priority objective of the most recent (2011) Decadal Survey for Planetary Science, by the National Research Council. This class of mission, however, faces a dramatic communications limitation, due to the lack of a frequent, or continuous, line-of-sight communications path to Earthbased ground stations. Brunner and others have proposed a communications system utilizing Low Lunar Polar Orbits (LLPO) and Lunar Halo orbits for this purpose. Ely and others have outlined proposals for using several communication satellites to form a relay network using LLPO, …


High-Fidelity Low-Thrust Trajectory Determination Research And Analysis, Tyler Hill Jun 2012

High-Fidelity Low-Thrust Trajectory Determination Research And Analysis, Tyler Hill

Aerospace Engineering

This document discusses a numerical analysis method for low thrust trajectory propagation known as the proximity quotient or Q-Law. The process uses a Lyapunov feedback control law developed by Petropoulos[1] to propagate trajectories of spacecraft by minimizing the user defined function at the target orbit. A simplified propagator is created from the core mechanics of this method in MATLAB and tested in several user defined cases to demonstrate its capabilities. Several anomalies arose in test cases where variations in eccentricity, inclination, right ascension of the ascending node, and argument of perigee were specified. Solutions to these anomalies are discussed …


De-Orbiting Upper Stage Rocket Bodies Using A Deployable High Altitude Drag Sail, Robert A. Hawkins Jr., Joseph A. Palomares Jun 2012

De-Orbiting Upper Stage Rocket Bodies Using A Deployable High Altitude Drag Sail, Robert A. Hawkins Jr., Joseph A. Palomares

Aerospace Engineering

This report examines the effectiveness of a drag sail to de-orbit upper stage rocket bodies. Many other perturbations contribute to the de-orbiting of these rocket bodies, and these perturbations will also be discussed briefly. This paper will show the length of time needed to force the altitudes of various launch vehicle stages with varying drag area sizes to less than 100 km. The upper stage of the Delta IV launch vehicle in an orbit with an altitude of 500 km will naturally de-orbit in 720 days but when equipped with a 20 m2 drag sail, it will de-orbit in …


Optimization And Design For Heavy Lift Launch Vehicles, Paul Andreas Ritter May 2012

Optimization And Design For Heavy Lift Launch Vehicles, Paul Andreas Ritter

Masters Theses

The simulation and evaluation of an orbital launch vehicle requires consideration of numerous factors. These factors include, but are not limited to the propulsion system, aerodynamic effects, rotation of the earth, oblateness, and gravity. A trajectory simulation that considers these different factors is generated by a code developed for this thesis titled Trajectories for Heavy-lift Evaluation and Optimization (THEO). THEO is a validated trajectory simulation code with the ability to model numerous launch configurations. THEO also has the capability to provide the means for an optimization objective. Optimization of a launch vehicle can be specified in terms of many different …


Investigating Various Propulsion Systems For An External Attachment For A Controlled-Manual De-Orbit Of The Hubble Space Telescope, Nelson De Guia Mar 2012

Investigating Various Propulsion Systems For An External Attachment For A Controlled-Manual De-Orbit Of The Hubble Space Telescope, Nelson De Guia

Aerospace Engineering

This reports explains the results for a proposed senior project. This project concerns the Hubble Space Telescope, and exploring the possibility of having an external propulsion attachment for a manual de-orbit. The Hubble Space Telescope was proposed to return to Earth via the Space Shuttle. Although, through the current U.S. Space Administration, the Space Shuttle has been retired before the Hubble Space Telescope was retrieved. By completing this project, the results could provide insight to what type of propulsion would best de-orbit the Hubble upon its retirement. Different propulsion systems were considered to attempt to determine an optimal attachment, varying …


Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad Dec 2011

Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad

Master's Theses

The paper describes the background and concepts behind a master’s thesis platform known as COMET (Constrained Optimization of Multiple-dimensions for Efficient Trajectories) created for mission designers to determine and evaluate suitable interplanetary trajectories. This includes an examination of the improvements to the global optimization algorithm, Differential Evolution, through a cascading search space pruning method and decomposition of optimization parameters. Results are compared to those produced by the European Space Agency’s Advanced Concept Team’s Multiple Gravity Assist Program. It was found that while discrepancies in the calculation of ΔV’s for flyby maneuvers exist between the two programs, COMET showed a noticeable …


Optimization Of Zero Net-Mass Flow Actuators For Aero-Optics Applications, Moira L. Denatale, Jonathan M. Mihaly May 2007

Optimization Of Zero Net-Mass Flow Actuators For Aero-Optics Applications, Moira L. Denatale, Jonathan M. Mihaly

Honors Capstone Projects - All

Using experimental methods, zero net-mass flow actuators were optimized to manipulate flow around an airborne laser turret in order to reduce destructive aero-optics effects. Synthetic jets are created by 50 mm and 27 mm piezoelectric disk actuators. Our optimization process involved identifying an actuator’s cavity size, driving frequency, and amplitude to achieve the strongest, most consistent jet possible. The effects of driving a single actuator versus driving two actuators in or out of phase with one another were also investigated. An initial cavity depth was determined using the Helmholtz resonator cavity approximation which estimates the ideal cavity depth for a …


Optimization Of Zero Net-Mass Flow Actuators For Aero-Optics Applications, Moira L. Denatale, Jonathan M. Mihaly May 2007

Optimization Of Zero Net-Mass Flow Actuators For Aero-Optics Applications, Moira L. Denatale, Jonathan M. Mihaly

Honors Capstone Projects - All

Using experimental methods, zero net-mass flow actuators were optimized to manipulate flow around an airborne laser turret in order to reduce destructive aero-optics effects. Synthetic jets are created by 50 mm and 27 mm piezoelectric disk actuators. Our optimization process involved identifying an actuator’s cavity size, driving frequency, and amplitude to achieve the strongest, most consistent jet possible. The effects of driving a single actuator versus driving two actuators in or out of phase with one another were also investigated. An initial cavity depth was determined using the Helmholtz resonator cavity approximation which estimates the ideal cavity depth for a …


Weatherford Air Show And General Thomas P. Stafford Museum Dedication, City Of Weatherford May 1987

Weatherford Air Show And General Thomas P. Stafford Museum Dedication, City Of Weatherford

Programs

This is a program from the 1987 Weatherford Air Show and General Thomas P. Stafford Museum Dedication in Weatherford, Oklahoma.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].


Second Annual Great Oklahoma Balloon Race & Airshow Gala Reception, Clarence E. Page Oklahoma Air And Space Museum Aug 1984

Second Annual Great Oklahoma Balloon Race & Airshow Gala Reception, Clarence E. Page Oklahoma Air And Space Museum

Programs

This is the program from the second annual Great Oklahoma Balloon Race & Airshow Gala Reception in honor of Astronaut, Lt. General Thomas P. Stafford. The event was held at the Clarence E. Page Oklahoma Aviation and Space Hall of Fame and Museum in the Kirkpatrick Center in OKC, OK, on Thursday, August 16th, 1984.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].


Apollo/Soyuz Tv Guide: "Soyuz, Soyuz, This Is Apollo...", Bob Button Jul 1975

Apollo/Soyuz Tv Guide: "Soyuz, Soyuz, This Is Apollo...", Bob Button

Articles

This is a TV Guide from 1975 that features a story about the televised Apollo/Soyuz mission.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].