Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 19 of 19

Full-Text Articles in Astrodynamics

The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern Jan 2024

The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern

Mechanical & Aerospace Engineering Faculty Publications

The Entry Systems Modeling (ESM) Program at NASA has actively participated in the re-development of the Magnetic Suspension Balance System (MSBS) at the six-inch subsonic wind tunnel at NASA Langley Research Center. This initiative aims to enhance the MSBS system's capabilities, enabling the testing of stingless entry vehicle models at supersonic speeds. To achieve this, control algorithms are required to ensure magnetic levitation control and stability for models during free-oscillation dynamic responses. Currently, the system relies on electromagnetic position sensors to provide real-time 3 degrees of freedom control of a rigid body. While this approach has proven successful for subsonic …


Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann Oct 2023

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga Jun 2023

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga

Master's Theses

On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure.

This research leverages a distributed control approach, …


Optimization Of Orbital Trajectories Using Neuroevolution Of Augmenting Topologies, Nathan Wetherell May 2022

Optimization Of Orbital Trajectories Using Neuroevolution Of Augmenting Topologies, Nathan Wetherell

University Scholar Projects

This project aims to determine the feasibility of using NeuroEvolution of Augmenting Topologies (NEAT), an advanced neural network evolution scheme, to optimize orbital transfer trajectories. More specifically, this project compares a genetically evolved neural network to a standard Hohmann transfer between Earth and Mars. To test these two methods, an N-body simulation environment was created to accurately determine the result of gravitational interactions on a theoretical spacecraft when combined with planned engine burns. Once created, this simulation environment was used to train the neural networks created using the NEAT Python module. A genetic algorithm was used to modify the topology …


On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez Dec 2021

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez

Master's Theses

Maintaining Space Domain Awareness (SDA) of satellites in low Earth orbit (LEO) requires effective methods of tracking and characterization. Optical measurements of these objects are generally sparse due to limited access intervals and high angular rates. Light pollution and geographic obstructions may also preclude consistent observations. However, a mobile small aperture telescope grants the ability to minimize such environmental effects, thereby increasing capture likelihoods for objects within this regime. By enhancing LEO satellite visibility in this way, extensive orbital and visual data are obtainable.

An 8-inch Meade LX200GPS telescope equipped with a Lumenera SKYnyx2-0M CCD camera comprises the system that …


Euler's Three-Body Problem, Sylvio R. Bistafa Aug 2021

Euler's Three-Body Problem, Sylvio R. Bistafa

Euleriana

In physics and astronomy, Euler's three-body problem is to solve for the motion of a body that is acted upon by the gravitational field of two other bodies. This problem is named after Leonhard Euler (1707-1783), who discussed it in memoirs published in the 1760s. In these publications, Euler found that the parameter that controls the relative distances among three collinear bodies is given by a quintic equation. Later on, in 1772, Lagrange dealt with the same problem, and demonstrated that for any three masses with circular orbits, there are two special constant-pattern solutions, one where the three bodies remain …


Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii Dec 2020

Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii

Master's Theses

The following thesis regards the use of small aperture telescopes for space domain awareness efforts. The rapidly populating space domain was motivation for the development of a new operation scheme to conduct space domain awareness feasibility studies using small telescopes. Two 14-inch Schmidt-Cassegrain Telescopes at the California Polytechnic State University and the Air Force Research Lab in Kirtland AFB, NM, in conjunction with a dedicated CCD camera and a commercial DSLR camera, were utilized to conduct optical observations on satellites in Earth orbit.

Satellites were imaged during August 2019, and from January 2020 to March 2020, resulting in the collection …


Visualization And Machine Learning Techniques For Nasa’S Em-1 Big Data Problem, Antonio P. Garza Iii, Jose Quinonez, Misael Santana, Nibhrat Lohia May 2019

Visualization And Machine Learning Techniques For Nasa’S Em-1 Big Data Problem, Antonio P. Garza Iii, Jose Quinonez, Misael Santana, Nibhrat Lohia

SMU Data Science Review

In this paper, we help NASA solve three Exploration Mission-1 (EM-1) challenges: data storage, computation time, and visualization of complex data. NASA is studying one year of trajectory data to determine available launch opportunities (about 90TBs of data). We improve data storage by introducing a cloud-based solution that provides elasticity and server upgrades. This migration will save $120k in infrastructure costs every four years, and potentially avoid schedule slips. Additionally, it increases computational efficiency by 125%. We further enhance computation via machine learning techniques that use the classic orbital elements to predict valid trajectories. Our machine learning model decreases trajectory …


Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson May 2018

Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson

Pedro J. Llanos (www.AstronauticsLlanos.com)

This study was conducted to better understand the performance of the XCOR Lynx vehicle. Because the Lynx development was halted, the best knowledge of vehicle dynamics can only be found through simulator flights. X-Plane 10 was chosen for its robust applications and accurate portrayal of dynamics on a vehicle in flight. The Suborbital Space Flight Simulator (SSFS) and Mission Control Center (MCC) were brought to the Applied Aviation Sciences department in fall 2015 at Embry-Riddle Aeronautical University, Daytona Beach campus. This academic and research tool is a department asset capable of providing multiple fields of data about suborbital simulated flights. …


Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson Jan 2018

Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson

Journal of Aviation/Aerospace Education & Research

This study was conducted to better understand the performance of the XCOR Lynx vehicle. Because the Lynx development was halted, the best knowledge of vehicle dynamics can only be found through simulator flights. X-Plane 10 was chosen for its robust applications and accurate portrayal of dynamics on a vehicle in flight. The Suborbital Space Flight Simulator (SSFS) and Mission Control Center (MCC) were brought to the Applied Aviation Sciences department in fall 2015 at Embry-Riddle Aeronautical University, Daytona Beach campus. This academic and research tool is a department asset capable of providing multiple fields of data about suborbital simulated flights. …


Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour Oct 2017

Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour

2017 Academic High Altitude Conference

The North Dakota Atmospheric Education Student Initiated Research (ND-AESIR) team launched a balloon during the total solar eclipse in Rexburg, Idaho. After the umbra’s passage, the balloon experienced unexpectedly high levels of atmospheric turbulence. Video footage taken from the payload displays the conditions, and analysis of flight path data models created from the iridium GPS confirm that unusually violent turbulence occurred. These forces caused the key rings holding the bottom of the parachute to the payload train to rip open; the balloon and parachute flew away and the payloads free fell to the surface from an altitude of 68,301 feet. …


A Pareto-Frontier Analysis Of Performance Trends For Small Regional Coverage Leo Constellation Systems, Christopher Alan Hinds Dec 2014

A Pareto-Frontier Analysis Of Performance Trends For Small Regional Coverage Leo Constellation Systems, Christopher Alan Hinds

Master's Theses

As satellites become smaller, cheaper, and quicker to manufacture, constellation systems will be an increasingly attractive means of meeting mission objectives. Optimizing satellite constellation geometries is therefore a topic of considerable interest. As constellation systems become more achievable, providing coverage to specific regions of the Earth will become more common place. Small countries or companies that are currently unable to afford large and expensive constellation systems will now, or in the near future, be able to afford their own constellation systems to meet their individual requirements for small coverage regions.

The focus of this thesis was to optimize constellation geometries …


Could We Colonize Venus?, Nihad E. Daidzic Mar 2014

Could We Colonize Venus?, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Spatial Computing In An Orbital Environment: An Exploration Of The Unique Constraints Of This Special Case To Other Spatial Computing Environments, Jeremy Straub May 2013

Spatial Computing In An Orbital Environment: An Exploration Of The Unique Constraints Of This Special Case To Other Spatial Computing Environments, Jeremy Straub

Jeremy Straub

The creation of an orbital services model (where spacecraft expose their capabilities for use by other spacecraft as part of a service-for-hire or barter system) requires effective determination of how to best transmit information between the two collaborating spacecraft. Existing approaches developed for ad hoc networking (e.g., wireless networks with users entering and departing in a pseudo-random fashion) exist; however, these fail to generate optimal solutions as they ignore a critical piece of available information. This additional piece of information is the orbital characteristics of the spacecraft. A spacecraft’s orbit is nearly deterministic if the magnitude and direction of its …


Open Space Box Model: Service Oriented Architecture Framework For Small Spacecraft Collaboration And Control, Atif F. Mohammad, Jeremy Straub Feb 2013

Open Space Box Model: Service Oriented Architecture Framework For Small Spacecraft Collaboration And Control, Atif F. Mohammad, Jeremy Straub

Jeremy Straub

A Cubesat is a small satellite with very less competence to compute, it requires software engineering techniques, which can enhance the computational power for this small box. A model-driven approach of software engineering, which is called OSBM or Open Space Box Modeling technique, is an excellent solution to this re-source maximization challenge. OSBM facilitates apparition of the key solution pro-cesses computation and satellite related data elements using Service Oriented Ar-chitecture 3.0 (SOA 3.0) as base to work on to design services. The key challenges that can be handled by utilizing OSBM include concurrent operation and tasking of few as five …


Asteroid Retrieval Feasibility Study, John Brophy, Fred Culick, Louis Friedman, Pedro Llanos, Et Al. Apr 2012

Asteroid Retrieval Feasibility Study, John Brophy, Fred Culick, Louis Friedman, Pedro Llanos, Et Al.

Publications

This report describes the results of a study sponsored by the Keck Institute for Space Studies (KISS) to investigate the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The KISS study was performed by people from Ames Research Center, Glenn Research Center, Goddard Space Flight Center, Jet Propulsion Laboratory, Johnson Space Center, Langley Research Center, the California Institute of Technology, Carnegie Mellon, Harvard University, the Naval Postgraduate School, University of California at Los Angeles, University of California at Santa Cruz, University of Southern …


Development And Analysis Of Onboard Translunar Injection Targeting Algorithms, Phillippe Lyles Winters Reed May 2011

Development And Analysis Of Onboard Translunar Injection Targeting Algorithms, Phillippe Lyles Winters Reed

Masters Theses

Several targeting algorithms are developed and analyzed for possible future use onboard a spacecraft. Each targeter is designed to determine the appropriate propulsive burn for translunar injection to obtain desired orbital parameters upon arrival at the moon. Primary design objectives are to minimize the computational requirements for each algorithm but also to ensure reasonable accuracy, so that the algorithm’s errors do not force the craft to conduct large mid-course corrections. Several levels of accuracy for dynamical models are explored, the convergence range and speed of each algorithm are compared, and the possible benefits of the Broyden and trust-region targeters are …


Mission Analysis And Design For Space Based Inter-Satellite Laser Power Beaming, Nicholas M. Keller Mar 2010

Mission Analysis And Design For Space Based Inter-Satellite Laser Power Beaming, Nicholas M. Keller

Theses and Dissertations

This research effort develops an interdisciplinary design tool to optimize an orbit for the purpose of wirelessly beaming power from the International Space Stations (ISS) Japanese Experimental Module Exposed Facility (JEM/EF) to a target satellite. For the purpose of this initiative, the target satellite will be referred to as FalconSAT6, a reference to the proposed follow-on satellite to the U.S. Air Force Academy’s (USAFA) FalconSAT5 program. The USAFA FalconSAT program provides cadets an opportunity to design, analyze, build, test and operate small satellites to conduct Department of Defense (DoD) space missions. The tool developed for this research is designed to …


Spacecraft Proximity Operations Used To Estimate The Dynamical & Physical Properties Of A Resident Space Object, Abraham F. Brunner Mar 2007

Spacecraft Proximity Operations Used To Estimate The Dynamical & Physical Properties Of A Resident Space Object, Abraham F. Brunner

Theses and Dissertations

When conducting a space proximity operation, developing high-fidelity estimates of the dynamical and physical properties of a Resident Space Object (RSO) based on post-rendezvous observational data acquired, is imperative for the understanding of the RSO itself and the operating environment. This research investigates the estimation of relative motion dynamics, rotational dynamics, and the feasibility of estimating the moments of inertia of a RSO. Using the Hill-Clohessy-Wiltshire equations, rigid-body dynamics, and estimation theory, a nonlinear least squares estimation algorithm is implemented in the processing of range data from tracked observation points on the RSO body. Through simulation, it was determined that …