Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Extrusion

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 72

Full-Text Articles in Engineering

Extrusion-Based Additive Manufacturing Of Magnetic Heat Exchange Structures For Caloric Applications, Vaibhav Sharma Jan 2024

Extrusion-Based Additive Manufacturing Of Magnetic Heat Exchange Structures For Caloric Applications, Vaibhav Sharma

Theses and Dissertations

Currently, the commercial building sector accounts for 18% of total U.S. end-use energy consumption, of which almost a third was from on-site combustion of fossil fuels for space and water heating. Magnetic heat pumping (MHP) technology is an energy-efficient, sustainable, environmentally-friendly alternative to conventional vapor-compression cooling technology. Several MHP designs today are predicted to be highly energy efficient, on condition that suitable working materials can be developed. This materials challenge has proven to be daunting due to issues associated with intricate synthesis/post-processing protocols and complications related to shaping the mostly brittle magnetocaloric alloys into thin-walled channeled regenerator structures to facilitate …


Composites 4.0: Enabling The Modernization Of Legacy Manufacturing Assets In South Carolina, Amit Makarand Deshpande, Gayatri Keskar, Sai Aditya Pradeep, Saeed Farahani, Srikanth Pilla Jun 2023

Composites 4.0: Enabling The Modernization Of Legacy Manufacturing Assets In South Carolina, Amit Makarand Deshpande, Gayatri Keskar, Sai Aditya Pradeep, Saeed Farahani, Srikanth Pilla

Publications

Composites 4.0 is the implementation of Industry 4.0 concepts to plastics and composites manufacturing with the goal to overcome the complexities associated with these materials. Due to very complex process-structure-property relationships associated with plastics and composites, a wide range of process parameters need to be tracked and monitored. Furthermore, these parameters are often affected by the tool and machinery, human intervention and variability and should thus, be monitored by integrating intelligence and connectivity in manufacturing systems. Retrofitting legacy manufacturing systems with modern sensing and control systems is emerging as one of the more cost-effective approaches as it circumvents the substantial …


Effects Of Metal Organic Frameworks In Polyether Block Amide Elastomer, Joe Alex May 2023

Effects Of Metal Organic Frameworks In Polyether Block Amide Elastomer, Joe Alex

Mechanical and Aerospace Engineering Theses

Metal-organic frameworks (MOFs) are highly porous materials that find extensive applications in gas absorption and separation in recent years. These hybrid materials can be designed with specific pore sizes and voids to selectively filter gases. PEBAX (MV 1074) is a commercially available polyether block amide copolymer generally used in gas separation applications. In this study, we characterize two different MOFs by means of a dispersion study and create a medium for them to be evenly dispersed into the aforementioned copolymer matrix. Polymer composite fibers are extruded using a twin-screw extruder and a winding unit at pre-determined parameters for winding speed …


Rheological Characterization Of Ultra-High Performance Concrete For 3d Printing, Arun R. Arunothayan, Behzad Nematollahi, Kamal Khayat, Akilesh Ramesh, Jay G. Sanjayan Feb 2023

Rheological Characterization Of Ultra-High Performance Concrete For 3d Printing, Arun R. Arunothayan, Behzad Nematollahi, Kamal Khayat, Akilesh Ramesh, Jay G. Sanjayan

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The authors recently developed a 3D-printable ultra-high performance fiber-reinforced concrete (3DP-UHPFRC) for additive construction of structural members with significantly reduced reliance on steel bars. This study investigates the rheological behavior of the developed 3DP-UHPFRC. The effects of two major factors affecting the performance of 3DP-UHPFRC, namely steel fiber volume (0, 1%, and 2%) and nano-clay (NC) content (0, 0.1%, and 0.2% by binder mass) on workability, static yield stress, dynamic yield stress, and apparent viscosity were determined. Test results showed that the inclusion of steel fibers and NC reduced the workability and led to a significant increase in the static …


Effect Of Sc On Recrystallization Resistance Of Aa7050, Keaton Schmidt Jan 2023

Effect Of Sc On Recrystallization Resistance Of Aa7050, Keaton Schmidt

Dissertations, Master's Theses and Master's Reports

The extrusion process involves high temperatures and strains that can result in undesirable microstructures, especially along the surface. Extruded alloys tend to exhibit surface recrystallization during heat treating at regions of higher strains, which can lead to reduced fatigue strength and corrosion resistance. By adding Sc to AA7050, nano-sized dispersoids are formed with Sc cores and Zr shells that restrict recrystallization more than the base alloy that only utilizes Zr. Billets with varying Sc content and a control with only Zr were cast, and extrusions were made in order to compare surface microstructures at varying strains in the as-extruded and …


Optimizing The Extrudability Of 6082 Aluminum By Varying The Magnesium And Silicon Concentration, Eli A. Harma Jan 2023

Optimizing The Extrudability Of 6082 Aluminum By Varying The Magnesium And Silicon Concentration, Eli A. Harma

Dissertations, Master's Theses and Master's Reports

Alloy 6082 aluminum is used for high-volume manufacturing in the automotive industry due to its high strength, impact performance, and corrosion resistance. However, given these improved properties, the alloy has decreased formability compared to other 6xxx series alloys, especially in the extrusion process. Controlling the dynamic recovery and recrystallization properties by changing the additions of Mg and Si can improve the hot deformation properties. Five alloys of varying Mg and Si concentrations between 0.6 to 1.2wt% Mg and 0.7 to 1.3wt% Si were made with constant concentrations of Cr, Fe, and Mn and the same homogenization heat treatment. The proposed …


Additive Manufacturing Of (Mgconicuzn)O High-Entropy Oxide Using A 3d Extrusion Technique And Oxide Precursors, Ruoyu Chen, Saisai Li, Qingfeng Yan, Haiming Wen Jan 2023

Additive Manufacturing Of (Mgconicuzn)O High-Entropy Oxide Using A 3d Extrusion Technique And Oxide Precursors, Ruoyu Chen, Saisai Li, Qingfeng Yan, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

This report presents an additive manufacturing approach, for the first time, to producing high-entropy oxides (HEOs) using a 3D extrusion-based technique with oxide precursors. The precursors were prepared by a wet chemical method from sulfates. Additives were utilized to optimize the rheological properties of the printing inks with these precursors, and the properties of the printed HEOs were improved by increasing the solid content of the inks. When ink with a solid content of 78 wt% was used for printing, the resulting HEO exhibited a relative density of 92% and a high dielectric constant after undergoing pressure less sintering at …


Effects Of Fiber Orientation On The Coefficient Of Thermal Expansion Of Fiber-Filled Polymer Systems In Large Format Polymer Extrusion-Based Additive Manufacturing, José Luis Colón Quintana, Lucinda Slattery, Jon Pinkham, Joanna Keaton, Roberto A. Lopez-Anido, Keith Sharp Apr 2022

Effects Of Fiber Orientation On The Coefficient Of Thermal Expansion Of Fiber-Filled Polymer Systems In Large Format Polymer Extrusion-Based Additive Manufacturing, José Luis Colón Quintana, Lucinda Slattery, Jon Pinkham, Joanna Keaton, Roberto A. Lopez-Anido, Keith Sharp

Civil Engineering Faculty Scholarship

Large format polymer extrusion-based additive manufacturing has been studied recently due to its capacity for high throughput, customizable bead size and geometry, and ability to manufacture large parts. Samples from three fiber-filled amorphous thermoplastic materials 3D printed using a Masterprint 3X machine from Ingersoll Machine Tools were studied, along with their neat counterparts. Characterization techniques included thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and thermo-mechanical analysis (TMA). TGA results showed that the fillers decreased the degradation temperature for most of the materials investigated, with a 30°C decrease for polycarbonate (PC) and a 12°C decrease for polyethylene terephthalate glycol (PETG). For …


Additive Manufacturing Waste Management System - Plastic Extrusion Process, Gabriel Bennett, Lindsay Liebrecht, David Lyogky, Wilson Woods Jan 2022

Additive Manufacturing Waste Management System - Plastic Extrusion Process, Gabriel Bennett, Lindsay Liebrecht, David Lyogky, Wilson Woods

Williams Honors College, Honors Research Projects

3D printing is a fast-growing market with its main source of waste being PLA and ABS plastics. In 2019, the global additive manufacturing market grew to over $10.4 billion, crossing the pivotal double-digit billion threshold for the first time in its nearly 40-year history. (SmarTech Analysis, 2020 Additive Manufacturing Market Outlook and Summary of Opportunities Report). The waste is generated from failed prints and rejected support structures which are common occurrences for personal use. Plastic recycling has become one of the leading discussions of environmental protection and waste management. The 3D market currently does not offer an effective and affordable …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Influence Of Rapid Solidification And Wrought Processing On Precipitation Strengthening And Deformation Mechanisms In Al-Sc-Zr Alloys, Yang Yang Jan 2020

Influence Of Rapid Solidification And Wrought Processing On Precipitation Strengthening And Deformation Mechanisms In Al-Sc-Zr Alloys, Yang Yang

Dissertations, Master's Theses and Master's Reports

Al-Sc-Zr alloys have drawn increasing attention in the last several decades due to their strengthening and coarsening resistance. In this study, solute concentrations of Sc and Zr were increased beyond their equilibrium solubilities without primary precipitate formation using melt-spinning. The melt-spun ribbon was metallurgically bonded into bulk shape using extrusion. With the proper aging treatment, the mechanical properties of the supersaturated melt-spun ribbon and extruded rod were found to be significantly higher than a baseline dilute alloy. Increased mechanical properties include microhardness, tensile strength at ambient-temperature, and compressive strength and threshold stress at and elevated-temperature. These increases were related to …


Understanding The Effect Of Single- And Twin-Screw Extrusion Processing Parameters On Physical And Physico-Chemical Properties Of Sprouted Quinoa And Sprouted Proso Millets, Gabriela John Swamy Jan 2020

Understanding The Effect Of Single- And Twin-Screw Extrusion Processing Parameters On Physical And Physico-Chemical Properties Of Sprouted Quinoa And Sprouted Proso Millets, Gabriela John Swamy

Electronic Theses and Dissertations

According to Mordor Intelligence Research, the new compositional research and moisture content extrusion process are helping the growth of the plant protein market. The demand for plant proteins is growing at a fast rate, owing to change in lifestyle, lack of balanced dietary intake, and improved research and development in order to develop new kinds of plant-protein enriched products. It is necessary to identify the right plant protein sources and choose the right processing methodology to create highly digestible foods which can be consumed by infants and elderly as well. In addition, it is important to support local farmers and …


Development Of A Process For Thermal And Mechanical Modelling Of Screw-Driven Pellets Extrusion, Kaixiang Shi Jan 2020

Development Of A Process For Thermal And Mechanical Modelling Of Screw-Driven Pellets Extrusion, Kaixiang Shi

Master’s Theses

The overall goal of the thesis project is to develop a process for thermal and mechanical modelling of the screw-driven pellets extrusion process, and applying the model results to design extruder temperature and flow rate controllers.

The proposed extruder is designed for metal 3D printing. The device demonstrates great potential in tackling some of the major issues faced by the metal additive manufacturing community. It eliminates the use of metal powder for workplace and workers safety. It is able to produce end-use parts with industrial grade mechanical and microstructural properties. It utilizes low cost metal-loaded polymer pellets as feedstock. However, …


Microscale Metal Forming: Mesoscopic Size Effect, Extrusion And Molding, Bin Zhang Mar 2019

Microscale Metal Forming: Mesoscopic Size Effect, Extrusion And Molding, Bin Zhang

LSU Doctoral Dissertations

The continuing trend of metallic device and product miniaturization has motivated studies on microscale metal forming technologies. A better understanding of materials’ mechanical response and deformation behavior is of importance for the design and operation of micro metal forming processes. In this dissertation, uniaxial compression testing was conducted on Al ring and pillar specimens with characteristic dimensions at meso to micro scales. The experimental data reveal inadequacies of the existing surface layer model and provides a baseline for delineating deformation mechanisms in micro metal forming operations. Microscale reverse extrusion experiment was carried out on Cu and Al rod specimens with …


Paddle Mixer-Extrusion Reactor For Torrefaction And Pyrolysis, Stas Zinchik Jan 2019

Paddle Mixer-Extrusion Reactor For Torrefaction And Pyrolysis, Stas Zinchik

Dissertations, Master's Theses and Master's Reports

This work is focused on the fundamental understanding and the development of paddle mixer reactors (or modified screw augers). This work will contribute to the effort of the thermal conversion of biomass and wastes. We developed and studied two paddle systems (i) 25-mm lab-scale (up to 1 kg/hr) and (ii) 101-mm pilot-scale (up to 100 kg/hr). Thermal behavior of the two systems was studied and it was estimated that the lab-scale system has a high heating rate of up to 530 °C/s. Residence times were thoroughly measured and were determined as a function of rotation frequency and volume fraction. We …


Development Of Test Methods For Characterizing Extrudability Of Cement-Based Materials For Use In 3d Printing, Jonathan Thomas Kuchem Jan 2019

Development Of Test Methods For Characterizing Extrudability Of Cement-Based Materials For Use In 3d Printing, Jonathan Thomas Kuchem

Masters Theses

"3D printing is the process of creating three-dimensional objects using an automated additive manufacturing process. The 3D printing process has been used with materials such as metals and polymers, but application with cement based materials for the construction industry has yet to be developed. In this research, two main problems were investigated for printing cement based composite materials: extrudability and tensile reinforcement. Fiber-reinforced concrete (FRC) was studied as an internal reinforcing system to increase tensile/flexural strength. First, FRC was studied to investigate mechanical properties and use of fibers from waste tires as an environmentally friendly option. A reference mixture with …


Effect Of Different Extrusion Processing Parameters On Physical Properties Of Soy White Flakes And High Protein Distillers Dried Grains-Based Extruded Aquafeeds, Sushil Kumar Singh, Kasiviswanathan Muthukumarappan Apr 2018

Effect Of Different Extrusion Processing Parameters On Physical Properties Of Soy White Flakes And High Protein Distillers Dried Grains-Based Extruded Aquafeeds, Sushil Kumar Singh, Kasiviswanathan Muthukumarappan

Sushil Singh

Nutritionally balanced ingredient blends for catla (Catla catla), belonging to the family Cyprinidae, were extruded using single screw extruder. The extrusion was carried out at five levels of soy white flakes content (21%, 29%, 40%, 52%, and 59% db), five levels of moisture content (15, 19, 25, 31, and 35% db) and five levels of barrel temperature (100, 110, 125, 140, and 150 ºC) using three different die nozzles (having L/D ratios 3.33, 5.83, and 7.25). Blends with net protein content of 32.5% contains soy white flakes, along with high protein distillers dried grains (HP-DDG), corn flour, corn gluten meal, …


Understanding The Effect Of Extrusion Processing Parameters On Physical, Nutritional And Rheological Properties Of Soy White Flakes Based Aquafeed In A Single Screw Extruder, Sushil Kumar Singh Mar 2018

Understanding The Effect Of Extrusion Processing Parameters On Physical, Nutritional And Rheological Properties Of Soy White Flakes Based Aquafeed In A Single Screw Extruder, Sushil Kumar Singh

Sushil Singh

The rapid expansion of aquaculture has increased the demand for aquafeed. As fishmeal is expensive, alternative plant based protein sources such as soybean has shown to be a good alternative for aquafeed production. The present study was done to investigate the effect of soy white flakes (SWF) as an alternative source of protein in the production of aquaculture feed through extrusion processing. Ingredient blends containing different levels of SWF along with distiller dried grains, corn flour, corn gluten meal, fish meal, vitamin and mineral mix with net protein adjusted to 32% protein were formulated. The ingredient blends were extruded in …


Valorization Of Proso Millet And Spent Grain For Extruded Snack Development, Joseph Woomer Jan 2018

Valorization Of Proso Millet And Spent Grain For Extruded Snack Development, Joseph Woomer

Theses and Dissertations--Biosystems and Agricultural Engineering

Fast-paced lifestyles result in consumers replacing traditional meals with on-the-go snack foods. In general, snacks are higher in saturated fats and simple sugars, and pose health concerns for consumers, which prompts the need for healthy nutritious alternatives to common snacks. Proso millet is a nutritious, and fast growing gluten free cereal. Spent grain (SG), the main by-product of brewing and distilling, contains high amount of protein and insoluble fibers. This study utilized proso millet and spent grain in the production of an extruded expanded snack, demonstrating their appropriateness as an ingredient in food production.

The first objective of this study …


Influence Of Processing Conditions On Apparent Viscosity And System Parameters During Extrusion Of Distiller’S Dried Grains-Based Snacks, Poonam Singha, Kasiviswanathan Muthukumarappan, Padmanaban Krishnan Dec 2017

Influence Of Processing Conditions On Apparent Viscosity And System Parameters During Extrusion Of Distiller’S Dried Grains-Based Snacks, Poonam Singha, Kasiviswanathan Muthukumarappan, Padmanaban Krishnan

POONAM SINGHA

A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase …


Influence Of Processing Conditions On Apparent Viscosity And System Parameters During Extrusion Of Distiller’S Dried Grains-Based Snacks, Poonam Singha, Kasiviswanathan Muthukumarappan, Padmanaban Krishnan Dec 2017

Influence Of Processing Conditions On Apparent Viscosity And System Parameters During Extrusion Of Distiller’S Dried Grains-Based Snacks, Poonam Singha, Kasiviswanathan Muthukumarappan, Padmanaban Krishnan

Padmanaban Krishnan

A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase …


Physicochemical And Nutritional Properties Of Extrudates From Food Grade Distiller’S Dried Grains, Garbanzo Flour, And Corn Grits, Poonam Singha, Sushil Kumar Singh, Kasiviswanathan Muthukumarappan, Padmanaban G. Krishnan Dec 2017

Physicochemical And Nutritional Properties Of Extrudates From Food Grade Distiller’S Dried Grains, Garbanzo Flour, And Corn Grits, Poonam Singha, Sushil Kumar Singh, Kasiviswanathan Muthukumarappan, Padmanaban G. Krishnan

Sushil Singh

Distiller’s dried grains and garbanzo flour were blended with corn grits for the development of extruded snacks using a single screw extruder. Distiller’s dried grains were processed for food application and termed as food grade distiller’s dried grains or FDDG. Effects of different level of FDDG addition (0%–20%) and extrusion process parameters such as barrel and die temperature (100–140°C), screw speed (100–200 rpm), and feed moisture content (14%–20% wet basis) on the physical properties (expansion ratio, bulk density, color parameters), functional properties (water absorption and solubility indices), and nutritional properties (total dietary fiber, soluble and insoluble dietary fiber and protein …


Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas Aug 2017

Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. This paper presents a further development of this process and focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components that cannot be fabricated without using support structures. The 3YSZ paste is deposited through the main nozzle, and a polycaprolactone (PCL) pellet feedstock is melted and deposited through an auxiliary nozzle to build support structures. After a green part is printed and dried, the support structures are removed by heating the part to ~70 ⁰C to melt the PCL. The part is then …


Analysis Of The Flow Behaviors Of Corn Meal During Extrusion, Daniel N. Hauersperger, Martin R. Okos, Troy Tonner Aug 2017

Analysis Of The Flow Behaviors Of Corn Meal During Extrusion, Daniel N. Hauersperger, Martin R. Okos, Troy Tonner

The Summer Undergraduate Research Fellowship (SURF) Symposium

Food extrusion can be used to make many products we consume today, including pasta, cereals and more. The ability to predict the characteristics of the final product from an extruder using raw material characteristics and operating conditions is vital to the extrusion process. In order to answer this need, the flow behavior of corn meal was measured in a lab viscometer (off-line) and compared to the flow behaviors from an extruder (in-line) at three different moisture contents (32.5%, 35%, 37.5% wet basis). The extruder and product are heated through the friction of the corn meal passing through the barrel not …


Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin Jan 2017

Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin

Dissertations, Master's Theses and Master's Reports

Stents made of biodegradable metallic materials are increasingly gaining interest within the biomaterials field because of their superior mechanical properties and biodegradation rates as compared to polymeric materials. Zinc and its alloys have been developed and investigated as possible candidates for biodegradable stent applications in the last five years. This study intended to formulate and characterize a new series of Zn-Ti alloys, with titanium additions of less than 1-3 wt%, with the primary objective to develop and select an alloy that meets benchmark values of mechanical properties for biodegradable stents. A series of Zn-Ti alloys was formulated through vacuum induction …


Understanding The Impact Of Extrusion Processing On Rheological, Textural And Functional Properties Of High-Protein, High-Fiber Extrudates, Poonam Singha Jan 2017

Understanding The Impact Of Extrusion Processing On Rheological, Textural And Functional Properties Of High-Protein, High-Fiber Extrudates, Poonam Singha

Electronic Theses and Dissertations

Extrusion processing is a technology widely used to make ready-to-eat snack and breakfast cereal products. Expanded products mainly consists of high levels of starch resulting in optimal texture and consumer acceptance. However, these products are usually low in nutritional value. One of the many alternatives are to combine legumes and cereals to improve the protein quality of the product. Another possibility is to enhance the nutritional value by incorporating fruits and vegetables. Fruits and vegetables are consistently under-consumed by the American population and incorporation into extruded products may help increase the intake of important nutrients, such as dietary fiber. The …


Numerical Modeling Of Heat Transfer And Material Flow During Friction Extrusion Process, Hongsheng Zhang Jun 2016

Numerical Modeling Of Heat Transfer And Material Flow During Friction Extrusion Process, Hongsheng Zhang

Theses and Dissertations

Friction extrusion process is a novel manufacturing process that converts low-cost metal precursors (e.g. powders and machining chips) into high-value wires with potential applications in 3D printing of metallic products. However, there is little existing scientific literature involving friction extrusion process until recently. The present work is to study the heat transfer and material flow phenomena during the friction extrusion process on aluminum alloy 6061 through numerical models validated by experimental measurements.

The first part is a study of a simplified process in which flow of a transparent Newtonian fluid in a cylindrical chamber caused by frictional contact with a …


Effect Of Thermal Exposure On Tensile Strength And Microhardness Of Welded And Precipitation Hardened Rx82 Aluminum Alloy Extrusions In The T4 And T6 Conditions, Lucien Miller Jun 2016

Effect Of Thermal Exposure On Tensile Strength And Microhardness Of Welded And Precipitation Hardened Rx82 Aluminum Alloy Extrusions In The T4 And T6 Conditions, Lucien Miller

Materials Engineering

This investigation is focused on the effect paint-bake cycles have on the tensile strength and microhardness of GMAW welded RX82 aluminum extrusions in T4 and T6 base conditions. To simulate the paint-bake cycle, T4 and T6 RX82 aluminum samples were GMAW welded and heat treated at 350°F, 390°F, and 425°F for durations of 30 minutes, 1.0 hour, and 2.0 hours, with five replicates for each treatment. Microhardness profiles of T4 samples treated at 350°F for 30 minutes and 1.0 hour display weld/HAZ HV values of 86.04 and 82.51 respectively, followed by maximums of 123.21 and 121.10. Average ultimate tensile strength …


Understanding The Effect Of Extrusion Processing Parameters On Physical, Nutritional And Rheological Properties Of Soy White Flakes Based Aquafeed In A Single Screw Extruder, Sushil Kumar Singh Jan 2016

Understanding The Effect Of Extrusion Processing Parameters On Physical, Nutritional And Rheological Properties Of Soy White Flakes Based Aquafeed In A Single Screw Extruder, Sushil Kumar Singh

Electronic Theses and Dissertations

The rapid expansion of aquaculture has increased the demand for aquafeed. As fishmeal is expensive, alternative plant based protein sources such as soybean has shown to be a good alternative for aquafeed production. The present study was done to investigate the effect of soy white flakes (SWF) as an alternative source of protein in the production of aquaculture feed through extrusion processing. Ingredient blends containing different levels of SWF along with distiller dried grains, corn flour, corn gluten meal, fish meal, vitamin and mineral mix with net protein adjusted to 32% protein were formulated. The ingredient blends were extruded in …


Design Features And Optimization Of Profile Extrusion Dies, Abhishek Sai Erri Pradeep Jan 2016

Design Features And Optimization Of Profile Extrusion Dies, Abhishek Sai Erri Pradeep

Dissertations, Master's Theses and Master's Reports

This report deals with design of dies used in the plastic extrusion industry. The design methodology for extrusion dies has evolved over the years with advancement of computing technology. However, the design process is still heavily dependent on the experience of the die designer, and hence is still considered to be more of an art than science. Even for an experienced designer, the time required to design the die and perform consecutive fine tuning iterations is high. In this report, a proprietary optimization code for extrusion dies, .developed by Plastic Flow LLC, was tested and shown to be advantageous over …