Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

CFD

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 414

Full-Text Articles in Engineering

Field Flow Measurements For Pipe Installations With Non-Ideal Conditions, Jake Douglas May 2024

Field Flow Measurements For Pipe Installations With Non-Ideal Conditions, Jake Douglas

All Graduate Theses and Dissertations, Fall 2023 to Present

Accurate flow measurement data is necessary to effectively manage water resources. The purpose of this research is to investigate options to improve field flow measurement by investigating alternatives for calibrating flow meters installed in non-ideal piping. Typically, to accurately measure a flow rate using most types of flow meters, it is recommended that a straight section of pipe be installed immediately upstream and downstream of the flow meter to avoid flow fluctuations at the meter location. However, in many cases, flow disturbances upstream of the meter are unavoidable.

The performance of field flow measurements in non-ideal piping scenarios were studied …


Study Of Vortices Formation In Lateral Intakes Of Pumping Stations, Muhammad Elgindi Jan 2024

Study Of Vortices Formation In Lateral Intakes Of Pumping Stations, Muhammad Elgindi

Theses and Dissertations

The inefficient design of pumping stations leads to undesirable flow characteristics and the formation of vortices in the sump. These undesirable flow features adversely affect the pumping unit performance and increase the operation and maintenance cost. The aim of this thesis is to assess the ability of the Realizable turbulence model to predict the formation of free-surface and submerged vortices within lateral pumping stations’ intakes. Additionally, the study aims to investigate the effect of the flow ratio and bottom clearance on the flow characteristics and the vortices formation in the sump. Finally, the study introduces an assessment of curtain walls …


Numerical Study Of The Effect Of Long Shroud Diffuser With And Without Plate Obstacle On The Performance Of Savonius Wind Turbine, Alsaied Khalil Mahmoud, Mohamed Mahgoub Bassuoni, Mohamed Fawzy Obiaa, Ahmed Mostafa Khaira Jan 2024

Numerical Study Of The Effect Of Long Shroud Diffuser With And Without Plate Obstacle On The Performance Of Savonius Wind Turbine, Alsaied Khalil Mahmoud, Mohamed Mahgoub Bassuoni, Mohamed Fawzy Obiaa, Ahmed Mostafa Khaira

Journal of Engineering Research

This study presents the three-dimensional (3-D) numerical analysis of the influence of the plate obstacle installed at the entrance of the long flanged diffuser on the simple Savonius rotor performance by ANSYS 2022 R1. In the beginning, the 3-D numerical model is validated using the sst k-ω turbulence model with the previous published experimental results at the same conditions, and they are in good agreement with each other. The numerical results indicate the remarkable enhancement of the rotor performance at a tip speed ratio of 0 to 0.7 by using a flanged diffuser with a plate obstacle. The shrouded diffuser …


Numerical Analysis Of A Multi-Stage Elastohydrodynamic Seal For Aircraft Engines, Md Wasif Hasan Jan 2024

Numerical Analysis Of A Multi-Stage Elastohydrodynamic Seal For Aircraft Engines, Md Wasif Hasan

Electronic Theses and Dissertations

At present, both governmental and private aviation enterprises are trying to develop aircraft that are swifter, more lightweight, and more cost-effective in order to maintain competitiveness on both the domestic and global stage. Continuous innovation and sustainability efforts are necessary to achieve advancements in aviation systems, such as fans, compressors, combustors, and turbines, as well as sub-systems, like engine seals. Advanced engine seals exhibit considerable potential in enhancing the engine's pressure ratio and cycle temperatures, leading to reduced engine weight, increased thrust, and improved fuel economy. In this study, a novel multistage seal idea has been proposed for the supercritical …


Development, Implementation, And Optimization Of A Modern, Subsonic/Supersonic Panel Method, Cory D. Goates Dec 2023

Development, Implementation, And Optimization Of A Modern, Subsonic/Supersonic Panel Method, Cory D. Goates

All Graduate Theses and Dissertations, Fall 2023 to Present

In the early stages of aircraft design, engineers consider many different design concepts, examining the trade-offs between different component arrangements and sizes, thrust and power requirements, etc. Because so many different designs are considered, it is best in the early stages of design to use simulation tools that are fast; accuracy is secondary. A common simulation tool for early design and analysis is the panel method. Panel methods were first developed in the 1950s and 1960s with the advent of modern computers. Despite being reasonably accurate and very fast, their development was abandoned in the late 1980s in favor of …


Design And Simulation Of A Utility Oilfield Flare In Iraq/Kurdistan Region Using Cfd And Api-521 Methodology, Ahmed A. Maaroof, Joseph D. Smith, Mohammed H.S. Zangana Aug 2023

Design And Simulation Of A Utility Oilfield Flare In Iraq/Kurdistan Region Using Cfd And Api-521 Methodology, Ahmed A. Maaroof, Joseph D. Smith, Mohammed H.S. Zangana

Chemical and Biochemical Engineering Faculty Research & Creative Works

This paper aims at reviewing and analyzing the operation and design of a utility flare in an oilfield in the Iraq/Kurdistan region. The flare supports a gas separation unit that separates 100 MMSCFD of natural gas from other liquid compounds in petroleum refining. The actual flare dimensions are 50 m high and 0.6 m diameter and works in summer where the crosswind speed is 9 m/s and a flow of 1.2 MMSCFD of treated natural gas is flaring through it. At the beginning, the flare design was performed using the API-521 recommended approach based on full operating capacity of the …


Applications Of Large Eddy Simulations To Novel Internal Combustion Concepts, Patrick O'Donnell Aug 2023

Applications Of Large Eddy Simulations To Novel Internal Combustion Concepts, Patrick O'Donnell

All Dissertations

Computational fluid dynamics (CFD) simulations of internal combustion engines (ICEs) are becoming an increasingly popular tool in the automotive industry to either explain experimentally observed trends or perform lower cost design iterations. The convenience of commercially available CFD software and advancements made in computing hardware have been the impetus behind this growing popularity. However, obtaining accurate results using these software packages is not a trivial process and requires an in-depth understanding of the underlying numerical methodology and sub models for various physical phenomena. Specific to the ICEs, CFD simulation often entails the use of models for detailed chemistry and combustion, …


Stabilization Trajectory And Recovery System For High Altitude Weather Balloon Payloads (S.T.A.R.), Robert Canalas, Aaron Juan, Miles Nguyen, James Oblitas, Anne Paloma Jun 2023

Stabilization Trajectory And Recovery System For High Altitude Weather Balloon Payloads (S.T.A.R.), Robert Canalas, Aaron Juan, Miles Nguyen, James Oblitas, Anne Paloma

Mechanical Engineering Senior Theses

Of the 657,000 global balloon launches each year, only 20% of payloads are recovered, leading to unsustainable business and environmental practices. This paper details the development and evaluation of the S.T.A.R. (Stabilization, Trajectory, and Recovery) system, which increases the recovery rate of weather balloon sensors by enabling ideal landing conditions. System testing concludes that S.T.A.R. is capable of housing weather sensors in a fully controllable glider capable of targeted landing. If properly scaled up and redesigned for mass production, the S.T.A.R. system increases weather-sensing equipment recovery for weather-reporting institutions around the world. Although the featured iterations consist of basswood, carbon …


A New Atomization Paradigm: Smart Wave-Augmented Varicose Explosions, Daniel Mason Wilson May 2023

A New Atomization Paradigm: Smart Wave-Augmented Varicose Explosions, Daniel Mason Wilson

Doctoral Dissertations and Projects

The characterization of viscous, non-Newtonian slurry heating and atomization by means of internal wave excitation is presented for a twin-fluid injector. We detail mechanisms that enhance their disintegration in a novel process called “Wave-Augmented Varicose Explosions” (WAVE). Atomization of such fluids is challenging, especially at low gas-liquid mass ratios. Droplet production is further complicated when slurry viscosity varies widely; if viscosity levels are too high, atomization quality suffers, and an undesirable pressure drop restricts the flow. To mitigate, we introduce and demonstrate “Smart” atomization, a novel implementation of simultaneous proportional integral derivative (PID) control algorithms to accommodate dynamically and extensively …


Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy May 2023

Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy

McKelvey School of Engineering Theses & Dissertations

The Hypersonic International Flight Research Experimentation (HIFiRE) program explores and advances hypersonic aerospace systems by developing a multitude of test flight geometries and conducting experimental test flights to obtain data for use in validation of computational models and results. This study focuses on computational validation of heat flux, and calculation of static pressure profiles, skin friction coefficient profiles, and flow contours. The flow fields studied are for Mach number 7.18 and angles of attack (α) of 0° & 2°. These flow fields include many compressible flow features such as an expansion wave at the intersection of the cone and flat …


Computational Modeling Of Patterned Membranes And Spacers For Improved Hydrodynamics And Fouling Reduction In Reverse Osmosis Water Treatment Processes, Zuo Zhou May 2023

Computational Modeling Of Patterned Membranes And Spacers For Improved Hydrodynamics And Fouling Reduction In Reverse Osmosis Water Treatment Processes, Zuo Zhou

All Dissertations

My research goal is to discover ways to improve the hydrodynamics of reverse osmosis (RO) membrane systems through creative membrane surface patterning and spacer designs. Since concentration polarization (CP) usually promotes membrane fouling, improving hydrodynamics would result in reduced fouling and better membrane performance. With computational fluid dynamics (CFD), we can explore dozens or even hundreds of models with different geometries and boundary conditions. Through plotting their velocity profile, streamlines, shear stress, pressure profile, concentration profile, and so on, we can determine which design would lead to the best performance.

At first, patterned membranes were evaluated and compared with flat …


Drop Impact On Dry And Liquid Infused Substrates With Micro-Wells., Ahmed Nazrul Islam May 2023

Drop Impact On Dry And Liquid Infused Substrates With Micro-Wells., Ahmed Nazrul Islam

Electronic Theses and Dissertations

Drop impact on different types of surfaces are important physical concepts that are routinely found in day-to-day life and such studies have immense application for various types of industries. One such important application of drop dynamics is in the field of aviation science which is concerned of very large freezing drizzle drops impacting on airplane wings. Such drops are known as supercooled large droplets (SLD), and they pose a great risk and have been long known to have caused notable accidents in the past. SLDs are liquid drops that can remain in the state of liquid phase and grow into …


Reynolds-Averaged Navier-Stokes Cfd Simulation Of High-Speed Boundary Layers, Michael Tullis May 2023

Reynolds-Averaged Navier-Stokes Cfd Simulation Of High-Speed Boundary Layers, Michael Tullis

Mechanical Engineering Undergraduate Honors Theses

This paper presents an investigation of Reynolds-averaged Navier-Stokes (RANS) turbulence models used in computational fluid dynamics (CFD) simulations of boundary layer flow and heat transfer in high Mach number flows. This study evaluates an industry standard RANS turbulence model (k-omega SST) and a recently proposed modification to that model (Danis and Durbin [1]), and quantifies the accuracy for predicting high Mach number boundary layer flow. The test cases were previously documented by Duan et al. (2018), who used direct numerical simulation (DNS) to calculate boundary layer flow of an ideal gas over a flat plate at freestream Mach numbers ranging …


Prediction & Active Control Of Multi-Rotor Noise, Samuel O. Afari Apr 2023

Prediction & Active Control Of Multi-Rotor Noise, Samuel O. Afari

Doctoral Dissertations and Master's Theses

Significant developments have been made in designing and implementation of Advanced Air Mobility Vehicles (AAMV). However, wider applications in urban areas require addressing several challenges, such as safety and quietness. These vehicles differ from conventional helicopter in that they operate at a relatively lower Reynolds number. More chiefly, they operate with multiples of rotors, which may pose some issues aerodynamically, as well as acoustically. The aim of this research is to first investigate the various noise sources in multi-rotor systems. High-fidelity simulations of two in-line counter-rotating propellers in hover, and in forward flight conditions are performed. Near field flow and …


Numerical Study Of Turbulent Flow And Heat Transfer In A Novel Design Of Serpentine Channel Coupled With D-Shaped Jaggedness Using Hybrid Nanofluid, Raditun E. Ratul, Farid Ahmed, Syed B. Alam, Md Rezwanul Karim, Arafat A. Bhuiyan Apr 2023

Numerical Study Of Turbulent Flow And Heat Transfer In A Novel Design Of Serpentine Channel Coupled With D-Shaped Jaggedness Using Hybrid Nanofluid, Raditun E. Ratul, Farid Ahmed, Syed B. Alam, Md Rezwanul Karim, Arafat A. Bhuiyan

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

This Study Aimed to Examine Numerically the Effects of a Dimpled Surface over a Mini-Channel Heat Exchanger on the Flow Characteristics and Heat Transfer Across a Serpentine Channel with a Uniform Rectangular Cross-Section. the Dimples Were Arranged in Parallel with a Spanwise (Y/d) Distance of 3.125 and Streamwise (X/d) Distance of 11.25 Along Just One Side of the Serpentine Channel's Surface. Turbulent Flow Regime with Reynolds Number Ranging from 5 X 103 to 20 X 103 in the Channel with the Surface Modification Was Studied using Water and Various Volume Concentrations (Φ = 0.1%, 0.33%, 0.75%, 1%) of Al2O3-Cu/water Hybrid …


Simulating Steam Jets Due To Rapid Plate Tectonics: A Computational Fluid Dynamics Analysis, Emilie Hatton Apr 2023

Simulating Steam Jets Due To Rapid Plate Tectonics: A Computational Fluid Dynamics Analysis, Emilie Hatton

Senior Honors Theses

According to the Bible's account of earth's physical history, the majority of geological change from creation to the Ice Age is a consequence of the global Flood cataclysm described in Genesis 6-8. The changes included large-scale tectonic activity, recycling all pre-Flood ocean floor into the mantle, and generating all present-day igneous ocean floor by seafloor spreading at mid-ocean rift zones. Along the middle of these zones, strips of newly formed seafloor were present near the melting temperature of basaltic magma. Above these strips of extremely hot rock, intense jets of steam would almost certainly form. This research seeks to investigate …


Cfd Simulation Of Anaerobic Granular Sludge Reactors: A Review, Camila D' Bastiani, David Kennedy, Anthony Reynolds Jan 2023

Cfd Simulation Of Anaerobic Granular Sludge Reactors: A Review, Camila D' Bastiani, David Kennedy, Anthony Reynolds

Articles

Anaerobic digestion processes can generate renewable energy in the form of biogas while treating organic wastewater. The generation of biogas within anaerobic digestion systems is directly linked to the mixing conditions inside the reactors. In high-rate reactors such as the up-flow anaerobic sludge blanket (UASB) reactor, the expanded granular sludge bed (EGSB) reactor and the internal circulation (IC) reactor, the hydrodynamic behaviour will depend on the interactions between the wastewater, the biogas, and the biomass granules. Over the past few years, various researchers have used computational fluid dynamics (CFD) to study the hydrodynamic behaviour in these types of reactors. This …


The Numerical Study Of Aeroacoustics Performance Of Wings With Different Wavelength Leading-Edge Tubercles, Youjie Zhang Jan 2023

The Numerical Study Of Aeroacoustics Performance Of Wings With Different Wavelength Leading-Edge Tubercles, Youjie Zhang

Honors Undergraduate Theses

The leading-edge tubercle is a type of airfoil modification that inspired by the humpback whale. It was found that the aerodynamic performance of the wing would increase compared to the wing without tubercles. In the past several years, a lot of numerical and experimental studies have been accomplished to explore this leading-edge modification. Besides the aerodynamic performance change, this research explores the aeroacoustics behavior of airfoils with leading-edge tubercles. A numerical study based on Computational Fluid Dynamics (CFD) is established, and simulations using Star CCM are accomplished based on reasonable set-ups. The airfoil chosen to create the wing is NACA …


A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade Jan 2023

A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade

Theses and Dissertations--Mechanical Engineering

Oxyacetylene torches are used in the aerospace industry and research to test thermal protection system materials (TPS) due to their high flame temperatures and high heat flux capabilities. The purpose of this work is to determine a combustion model to accurately simulate the high temperature flow of an oxyacetylene torch. The flow conditions around a sample material can then be used as boundary conditions when modeling TPS material response. Two separate combustion models with equilibrium chemistry were investigated using ANSYS Fluent™; the Eddy-Dissipation Model, and the Partially Premixed model.The results of this study are compared to existing experiments for validation.


Optimization Of Ported Cfd Kernels On Intel Data Center Gpu Max 1550 Using Oneapi Esimd, Mohammad Zubair, Aaron Walden, Gabriel Nastac, Eric Nielsen, Christoph Bauinger, Xiao Zhu Jan 2023

Optimization Of Ported Cfd Kernels On Intel Data Center Gpu Max 1550 Using Oneapi Esimd, Mohammad Zubair, Aaron Walden, Gabriel Nastac, Eric Nielsen, Christoph Bauinger, Xiao Zhu

Computer Science Faculty Publications

We describe our experience porting FUN3D’s CUDA-optimized kernels to Intel oneAPI SYCL.We faced several challenges, including foremost the suboptimal performance of the oneAPI code on Intel’s new data center GPU. Suboptimal performance of the oneAPI code was due primarily to high register spills, memory latency, and poor vectorization. We addressed these issues by implementing the kernels using Intel oneAPI’s Explicit SIMD SYCL extension (ESIMD) API. The ESIMD API enables the writing of explicitly vectorized kernel code, gives more precise control over register usage and prefetching, and better handles thread divergence compared to SYCL. The ESIMD code outperforms the optimized SYCL …


Development Of A Quasi-Dimension Gci Combustion Model Aided By Cfd, Jinsu Kim Jan 2023

Development Of A Quasi-Dimension Gci Combustion Model Aided By Cfd, Jinsu Kim

Graduate Theses, Dissertations, and Problem Reports

Advanced combustion strategies have been proposed to improve fuel efficiency while minimizing exhaust emissions. Gasoline compression ignition (GCI) combustion featuring partially premixed compression ignition (PPCI) and diffusion combustion has been recognized as an attractive, viable combustion strategy for its potential and advantages over conventional diesel and gasoline engines. The optimization of the GCI engine system requires the development of a quasi-dimensional GCI combustion model capable of simulating GCI combustion while requesting less computational burden than CFD simulation, which is very critical in engine system simulation. This study developed a quasi-dimension, phenomenological combustion model for PPCI and diffusion combustion to facilitate …


Cfd Analysis For Beyond Bubbly Gas-Liquid Two-Phase Flows In A Large Diameter Pipe, Sungje Hong Jan 2023

Cfd Analysis For Beyond Bubbly Gas-Liquid Two-Phase Flows In A Large Diameter Pipe, Sungje Hong

Doctoral Dissertations

"Due to the complexity of multiphase flow phenomena, numerical analysis for multiphase turbulent flow is not as reliable as single-phase computational fluid dynamics (CFD). A literature review has revealed that the current efforts on multiphase flow simulation have focused on small diameter channels under very restricted flow conditions and have been conducted without identifying some important procedures. To expand CFD applications to a wide range of two-phase flow conditions in large diameter channels, this study aims to validate the current CFD models for vertical concurrent air-water two-phase flow simulations beyond bubbly flows. First, a numerical model developed to describe dynamical …


Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth Dec 2022

Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth

McKelvey School of Engineering Theses & Dissertations

With the advent of arteriovenous fistula (AVF) for use in hemodialysis, the anastomosis built for such use has become a central point of the study to understand the flow and wall shear stresses in such a system since very large wall shear stresses can lead to arterial/vein rupture. Considering the commonly used creation site of an anastomosis as connecting the radial artery to the cephalic vein, a model is created to calculate the wall shear stresses across various components of the system. The model depicts a connection of the specified vein and artery bridged together allowing the increase in blood …


Morton-Ordered Gpu Lattice Boltzmann Cfd Simulations With Application To Blood Flow, Gerald Gallagher, Fergal J. Boyle Sep 2022

Morton-Ordered Gpu Lattice Boltzmann Cfd Simulations With Application To Blood Flow, Gerald Gallagher, Fergal J. Boyle

Conference Papers

Computational fluid dynamics (CFD) is routinely used for numerically predicting cardiovascular-system medical device fluid flows. Most CFD simulations ignore the suspended cellular phases of blood due to computational constraints, which negatively affects simulation accuracy. A graphics processing unit (GPU) lattice Boltzmann-immersed boundary (LB-IB) CFD software package capable of accurately modelling blood flow is in development by the authors, focusing on the behaviour of plasma and stomatocyte, discocyte and echinocyte red blood cells during flow. Optimised memory ordering and layout schemes yield significant efficiency improvements for LB GPU simulations. In this work, comparisons of row-major-ordered Structure of Arrays (SoA) and Collected …


Effects Of Rotor-Airframe Interaction On The Aeromechanics And Wake Of A Quadcopter In Forward Flight, Denis-Gabriel Caprace, Andrew Ning, Philippe Chatelain, Grégoire Winckelmans Sep 2022

Effects Of Rotor-Airframe Interaction On The Aeromechanics And Wake Of A Quadcopter In Forward Flight, Denis-Gabriel Caprace, Andrew Ning, Philippe Chatelain, Grégoire Winckelmans

Faculty Publications

From small drones to large Urban Air Mobility vehicles, the market of vertical take-off and landing (VTOL) aircraft is currently booming. Modern VTOL designs feature a variety of configurations involving rotors, lifting surfaces and bluff bodies. The resulting aerodynamics are highly impacted by the interactions between those components and their wakes. This has consequences on the aircraft performance and on the downstream wake. Studying the effects of those interactions through CFD can inform the development of cheaper numerical models. In this work, we focus on the interaction between rotors and bluff bodies based on the example of a generic quadcopter …


Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes Aug 2022

Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes

Doctoral Dissertations

Laminar-turbulent boundary-layer transition has a demonstrable impact on the performance of aerospace vehicles. The ability to accurately predict transition is integral to properly capturing relevant flow physics. Traditionally, computational fluid dynamics simulations are performed fully turbulent, meaning that laminar flow is neglected. This, however, can result in errant predictions of vehicle performance as quantities such as skin-friction drag may be overpredicted. Resultingly, development of Reynolds-averaged Navier-Stokes transition models has seen significant attention over the last decades in order to model transition and realize the performance improvements of laminar flow.

In this work, the behaviors of several different transition-prediction methods are …


Using Computational Fluid Dynamics To Predict Flow Through The West Crack Breach Of The Great Salt Lake Railroad Causeway, Michael Rasmussen Aug 2022

Using Computational Fluid Dynamics To Predict Flow Through The West Crack Breach Of The Great Salt Lake Railroad Causeway, Michael Rasmussen

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The Great Salt Lake in Utah, USA, is a terminal, saline lake and is divided into two primary sections (northern and southern) by an east-to-west railroad causeway. Shortly after completion of the earth-fill causeway in the late 1950s, the two sections became dramatically different with differences in water surface elevation and water density. These differences cause the formation of a unique flow behavior commonly referred to as a density-driven exchange flow or bi-directional flow; a behavior observed in other lake and ocean settings where two fluids of differing densities interact. Measuring these exchange flows is a priority for lake managers …


Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley Aug 2022

Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley

Masters Theses

The rotor hub is one of the most important features of all helicopters, as it provides the pilot a means for controlling the vehicle by changing the characteristics of the main and tail rotors. The hub also provides a structural foundation for the rotors and allows for the rotor blades to respond to aerodynamic forces while maintaining controllability and stability. Due to the inherent geometry and high rate of rotation, the rotor hub in its current form acts a large bluff body and is the primary source of parasite drag on the helicopter, despite its relatively small size. The rotor …


Fire Simulation And Analysis Of A Switchgear Cabinet Fire And Its Effects On Cable Trays, Yalcin Meraki Aug 2022

Fire Simulation And Analysis Of A Switchgear Cabinet Fire And Its Effects On Cable Trays, Yalcin Meraki

Masters Theses

Switchgear rooms are crucial in containing essential equipment such as cabinets and cable trays in case of a possible fire. There are three fire model classes which are algebraic models, zone model, and computation fluid dynamics model (CFD). PyroSim software, a visual user interface for the Fire Dynamics Simulator (FDS) developed at the National Institute of Standards and Technology (NIST), was used for simulation by using the CFD. Two different 464 kW and 1002 kW heat release rate (HRR) values were used under the same conditions for the fire scenario. By considering a fire scenario, the fire ignited due to …


Reformulated Vortex Particle Method And Meshless Large Eddy Simulation Of Multirotor Aircraft, Eduardo J. Alvarez Jun 2022

Reformulated Vortex Particle Method And Meshless Large Eddy Simulation Of Multirotor Aircraft, Eduardo J. Alvarez

Theses and Dissertations

The vortex particle method (VPM) is a mesh-free approach to computational fluid dynamics (CFD) solving the Navier-Stokes equations in their velocity-vorticity form. The VPM uses a Lagrangian scheme, which not only avoids the hurdles of mesh generation, but it also conserves vortical structures over long distances with minimal numerical dissipation while being orders of magnitude faster than conventional mesh-based CFD. However, VPM is known to be numerically unstable when vortical structures break down close to the turbulent regime. In this study, we reformulate the VPM as a large eddy simulation (LES) in a scheme that is numerically stable, without increasing …