Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 65 of 65

Full-Text Articles in Engineering

Aligning Electronic Energy Levels On The Anatase Tio2(101) Surface, Jun-Jie Zhao, Jun Cheng Feb 2017

Aligning Electronic Energy Levels On The Anatase Tio2(101) Surface, Jun-Jie Zhao, Jun Cheng

Journal of Electrochemistry

As one of the most commonly-used materials for photocatalysis and solar energy conversion, titanium dioxide (TiO2) has been extensively studied for more than 40 years. Its photoelectrochemical activity crucially depends on the band positions at the interface. In this work, the valence band maximum (VBM) and conduction band minimum (CBM) of a model TiO2 surface are computed using the standard work function method at the level of Perdew-Burke-Ernzerhof (PBE) density functional, which are then converted to the scale of the standard hydrogen electrode (SHE) by subtracting the absolute SHE potential. Comparing with the rutile TiO2(110) …


The Problem Of The Anode Electrolyte In H-Type Electrolytic Cell For Electrochemical Reduction Of Carbon Dioxide, Rui Zhang, Wei-Xin Lv, Li-Xu Lei Feb 2017

The Problem Of The Anode Electrolyte In H-Type Electrolytic Cell For Electrochemical Reduction Of Carbon Dioxide, Rui Zhang, Wei-Xin Lv, Li-Xu Lei

Journal of Electrochemistry

Electrochemical reduction of carbon dioxide (CO2) was studied in the H-type electrolytic cell. It was found that the voltage between the cathode and the anode would increase during the long time electrolysis process, for this reason the electrolytic process would be unsustainable. After the experimental investigations carried out by constant potential electrolysis, constant current electrolysis, pH test and KHCO3 concentration analysis of anode electrolyte before and after the electrolysis, the increase in cell voltage might be caused by the following process: H+, that was generated from the anodic oxygen evolution reaction, reacted with HCO3 …


Application Of Adamantane Schiff Base Nickel Complexes/Graphene Oxide/Glassy Carbon Modified Electrode In Detection Of Carmine, Peng Guo, Zheng Liu, Hai-Ying Li, Li-Ming Ma Feb 2017

Application Of Adamantane Schiff Base Nickel Complexes/Graphene Oxide/Glassy Carbon Modified Electrode In Detection Of Carmine, Peng Guo, Zheng Liu, Hai-Ying Li, Li-Ming Ma

Journal of Electrochemistry

The Schiff base nickel complexes/graphene oxide/glassy carbon electrodes were prepared by embedded method and electrodeposition on which were used to quantitatively detect the contents of carmine. Cyclic voltammetry, chronoamperometry, scanning electron microscopy (SEM) and other methods were employed to characterize properties and morphologies of the modified electrodes. The results show that the adamantane double Schiff base nickel complexes/graphene oxide/glassy carbon electrode had high electric catalytic activity toward carmine oxidation reaction, and might provide an easy and quick way to detect carmine content with good reproducibility.


Preparation And Electrochemical Properties Of Attapulgite-Supported Nitrogen-Doped Carbon@Nico2O4Composites For Supercapacitors, Hui Wan, Zong-Rong Ying, Xin-Dong Liu, Jian-Jian Lu, Wen-Wen Zhang Feb 2017

Preparation And Electrochemical Properties Of Attapulgite-Supported Nitrogen-Doped Carbon@Nico2O4Composites For Supercapacitors, Hui Wan, Zong-Rong Ying, Xin-Dong Liu, Jian-Jian Lu, Wen-Wen Zhang

Journal of Electrochemistry

In this work, the attapulgite-supported nitrogen-doped carbon (ANC) was prepared by in-situ chemically polymerizing polyaniline coating upon attapulgite, followed by high temperature heat treatment, and then NiCo2O4was reacted onto the surface of ANC by a combination of hydrothermal reaction and calcination to synthesize ANC@NiCo2O4 composites. The chemical composition and morphology of the samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption/desorption. The electrochemical properties were evaluated by means of constant current charge discharge (GCD) and cyclic voltammetry (CV). …


Effect Of Pressure On Ion Selectivity In Biomimetic Nanopores With Ph-Tunable Polyelectrolyte Brushes, Hui-Xia Shan, Zhen-Ping Zeng, Li-Xian Ye, Feng Shu Feb 2017

Effect Of Pressure On Ion Selectivity In Biomimetic Nanopores With Ph-Tunable Polyelectrolyte Brushes, Hui-Xia Shan, Zhen-Ping Zeng, Li-Xian Ye, Feng Shu

Journal of Electrochemistry

Biomimetic ionic channels of synthetic nanopores functionalized with pH-tunable polyelectrolyte (PE) brushes have significant application potentials for active transport control of ions, fluids, and bioparticles on the nanoscale. Ion selectivity is an important phenomenon of ion transport in nanofluidic devices, which has great theoretical significance and practical values. We propose a pressure control scheme to control the ion selectivity in biomimetic nano-systems with pH-tunable PE brushes. Effects of the solution properties (i.e., pH and background salt concentration), the applied voltage and pressure on ion selectivity are comprehensively investigated. The results show that ion selectivity is sensitive to pressure. Unlike the …