Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Computer Sciences

Deep Learning

Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 80

Full-Text Articles in Engineering

Evaluation Of Robust Deep Learning Pipelines Targeting Low Swap Edge Deployment, David Carter Cornett Dec 2021

Evaluation Of Robust Deep Learning Pipelines Targeting Low Swap Edge Deployment, David Carter Cornett

Masters Theses

The deep learning technique of convolutional neural networks (CNNs) has greatly advanced the state-of-the-art for computer vision tasks such as image classification and object detection. These solutions rely on large systems leveraging wattage-hungry GPUs to provide the computational power to achieve such performance. However, the size, weight and power (SWaP) requirements of these conventional GPU-based deep learning systems are not suitable when a solution requires deployment to so called "Edge" environments such as autonomous vehicles, unmanned aerial vehicles (UAVs) and smart security cameras.

The objective of this work is to benchmark FPGA-based alternatives to conventional GPU systems that have the …


Medical Image Segmentation Using Machine Learning, Masoud Khani Aug 2021

Medical Image Segmentation Using Machine Learning, Masoud Khani

Theses and Dissertations

Image segmentation is the most crucial step in image processing and analysis. It can divide an image into meaningfully descriptive components or pathological structures. The result of the image division helps analyze images and classify objects. Therefore, getting the most accurate segmented image is essential, especially in medical images. Segmentation methods can be divided into three categories: manual, semiautomatic, and automatic. Manual is the most general and straightforward approach. Manual segmentation is not only time-consuming but also is imprecise. However, automatic image segmentation techniques, such as thresholding and edge detection, are not accurate in the presence of artifacts like noise …


Forecasting Pedestrian Trajectory Using Deep Learning, Arsal Syed Aug 2021

Forecasting Pedestrian Trajectory Using Deep Learning, Arsal Syed

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this dissertation we develop different methods for forecasting pedestrian trajectories. Complete understanding of pedestrian motion is essential for autonomous agents and social robots to make realistic and safe decisions. Current trajectory prediction methods rely on incorporating historic motion, scene features and social interaction to model pedestrian behaviors. Our focus is to accurately understand scene semantics to better forecast trajectories. In order to do so, we leverage semantic segmentation to encode static scene features such as walkable paths, entry/exits, static obstacles etc. We further evaluate the effectiveness of using semantic maps on different datasets and compare its performance with already …


Hardware For Quantized Mixed-Precision Deep Neural Networks, Andres Rios Aug 2021

Hardware For Quantized Mixed-Precision Deep Neural Networks, Andres Rios

Open Access Theses & Dissertations

Recently, there has been a push to perform deep learning (DL) computations on the edge rather than the cloud due to latency, network connectivity, energy consumption, and privacy issues. However, state-of-the-art deep neural networks (DNNs) require vast amounts of computational power, data, and energyâ??resources that are limited on edge devices. This limitation has brought the need to design domain-specific architectures (DSAs) that implement DL-specific hardware optimizations. Traditionally DNNs have run on 32-bit floating-point numbers; however, a body of research has shown that DNNs are surprisingly robust and do not require all 32 bits. Instead, using quantization, networks can run on …


Signal Processing And Data Analysis For Real-Time Intermodal Freight Classification Through A Multimodal Sensor System., Enrique J. Sanchez Headley Jul 2021

Signal Processing And Data Analysis For Real-Time Intermodal Freight Classification Through A Multimodal Sensor System., Enrique J. Sanchez Headley

Graduate Theses and Dissertations

Identifying freight patterns in transit is a common need among commercial and municipal entities. For example, the allocation of resources among Departments of Transportation is often predicated on an understanding of freight patterns along major highways. There exist multiple sensor systems to detect and count vehicles at areas of interest. Many of these sensors are limited in their ability to detect more specific features of vehicles in traffic or are unable to perform well in adverse weather conditions. Despite this limitation, to date there is little comparative analysis among Laser Imaging and Detection and Ranging (LIDAR) sensors for freight detection …


Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman Jun 2021

Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman

Master's Theses

Thermals are regions of rising hot air formed on the ground through the warming of the surface by the sun. Thermals are commonly used by birds and glider pilots to extend flight duration, increase cross-country distance, and conserve energy. This kind of powerless flight using natural sources of lift is called soaring. Once a thermal is encountered, the pilot flies in circles to keep within the thermal, so gaining altitude before flying off to the next thermal and towards the destination. A single thermal can net a pilot thousands of feet of elevation gain, however estimating thermal locations is not …


Convolutional Neural Networks For Deflate Data Encoding Classification Of High Entropy File Fragments, Nehal Ameen May 2021

Convolutional Neural Networks For Deflate Data Encoding Classification Of High Entropy File Fragments, Nehal Ameen

University of New Orleans Theses and Dissertations

Data reconstruction is significantly improved in terms of speed and accuracy by reliable data encoding fragment classification. To date, work on this problem has been successful with file structures of low entropy that contain sparse data, such as large tables or logs. Classifying compressed, encrypted, and random data that exhibit high entropy is an inherently difficult problem that requires more advanced classification approaches. We explore the ability of convolutional neural networks and word embeddings to classify deflate data encoding of high entropy file fragments after establishing ground truth using controlled datasets. Our model is designed to either successfully classify file …


Assessment And Diagnosis Of Human Colorectal And Ovarian Cancer Using Optical Imaging And Computer-Aided Diagnosis, Yifeng Zeng May 2021

Assessment And Diagnosis Of Human Colorectal And Ovarian Cancer Using Optical Imaging And Computer-Aided Diagnosis, Yifeng Zeng

McKelvey School of Engineering Theses & Dissertations

Tissue optical scattering has recently emerged as an important diagnosis parameter associated with early tumor development and progression. To characterize the differences between benign and malignant colorectal tissues, we have created an automated optical scattering coefficient mapping algorithm using an optical coherence tomography (OCT) system. A novel feature called the angular spectrum index quantifies the scattering coefficient distribution. In addition to scattering, subsurface morphological changes are also associated with the development of colorectal cancer. We have observed a specific mucosa structure indicating normal human colorectal tissue, and have developed a real-time pattern recognition neural network to localize this specific structure …


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Teachability And Interpretability In Reinforcement Learning, Jeevan Rajagopal May 2021

Teachability And Interpretability In Reinforcement Learning, Jeevan Rajagopal

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

There have been many recent advancements in the field of reinforcement learning, starting from the Deep Q Network playing various Atari 2600 games all the way to Google Deempind's Alphastar playing competitively in the game StarCraft. However, as the field challenges more complex environments, the current methods of training models and understanding their decision making become less effective. Currently, the problem is partially dealt with by simply adding more resources, but the need for a better solution remains.

This thesis proposes a reinforcement learning framework where a teacher or entity with domain knowledge of the task to complete can assist …


Deep Learning Based Sound Event Detection And Classification, Alireza Nasiri Apr 2021

Deep Learning Based Sound Event Detection And Classification, Alireza Nasiri

Theses and Dissertations

Hearing sense has an important role in our daily lives. During the recent years, there has been many studies to transfer this capability to the computers. In this dissertation, we design and implement deep learning based algorithms to improve the ability of the computers in recognizing the different sound events.

In the first topic, we investigate sound event detection, which identifies the time boundaries of the sound events in addition to the type of the events. For sound event detection, we propose a new method, AudioMask, to benefit from the object-detection techniques in computer vision. In this method, we convert …


Strategies In Botnet Detection And Privacy Preserving Machine Learning, Di Zhuang Mar 2021

Strategies In Botnet Detection And Privacy Preserving Machine Learning, Di Zhuang

USF Tampa Graduate Theses and Dissertations

Peer-to-peer (P2P) botnets have become one of the major threats in network security for serving as the infrastructure that responsible for various of cyber-crimes. Though a few existing work claimed to detect traditional botnets effectively, the problem of detecting P2P botnets involves more challenges. In this dissertation, we present two P2P botnet detection systems, PeerHunter and Enhanced PeerHunter. PeerHunter starts from a P2P hosts detection component. Then, it uses mutual contacts as the main feature to cluster bots into communities. Finally, it uses community behavior analysis to detect potential botnet communities and further identify bot candidates. Enhanced PeerHunter is an …


Cascaded Deep Learning Network For Postearthquake Bridge Serviceability Assessment, Youjeong Jang Jan 2021

Cascaded Deep Learning Network For Postearthquake Bridge Serviceability Assessment, Youjeong Jang

Electronic Theses and Dissertations

Damages assessment of bridges is important to derive immediate response after severe events to decide serviceability. Especially, past earthquakes have proven the vulnerability of bridges with insufficient detailing. Due to lack of a national and unified post-earthquake inspection procedure for bridges, conventional damage assessments are performed by sending professional personnel to the onsite, detecting visually and measuring the damage state. To get accurate and fast damage result of bridge condition is important to save not only lives but also costs.
There have been studies using image processing techniques to assess damage of bridge column without sending individual to onsite. Convolutional …


The U-Net-Based Active Learning Framework For Enhancing Cancer Immunotherapy, Vishwanshi Joshi Jan 2021

The U-Net-Based Active Learning Framework For Enhancing Cancer Immunotherapy, Vishwanshi Joshi

Theses, Dissertations and Capstones

Breast cancer is the most common cancer in the world. According to the U.S. Breast Cancer Statistics, about 281,000 new cases of invasive breast cancer are expected to be diagnosed in 2021 (Smith et al., 2019). The death rate of breast cancer is higher than any other cancer type. Early detection and treatment of breast cancer have been challenging over the last few decades. Meanwhile, deep learning algorithms using Convolutional Neural Networks to segment images have achieved considerable success in recent years. These algorithms have continued to assist in exploring the quantitative measurement of cancer cells in the tumor microenvironment. …


A New Distributed Anomaly Detection Approach For Log Ids Management Based Ondeep Learning, Murat Koca, Muhammed Ali̇ Aydin, Ahmet Sertbaş, Abdül Hali̇m Zai̇m Jan 2021

A New Distributed Anomaly Detection Approach For Log Ids Management Based Ondeep Learning, Murat Koca, Muhammed Ali̇ Aydin, Ahmet Sertbaş, Abdül Hali̇m Zai̇m

Turkish Journal of Electrical Engineering and Computer Sciences

Today, with the rapid increase of data, the security of big data has become more important than ever for managers. However, traditional infrastructure systems cannot cope with increasingly big data that is created like an avalanche. In addition, as the existing database systems increase licensing costs per transaction, organizations using information technologies are shifting to free and open source solutions. For this reason, we propose an anomaly attack detection model on Apache Hadoop distributed file system (HDFS), which stands out in open source big data analytics, and Apache Spark, which stands out with its speed performance in analysis to reduce …


Improving A Network Intrusion Detection System’S Efficiency Using Model-Based Data Augmentation, Vinicius Waterkemper Lodetti Jan 2021

Improving A Network Intrusion Detection System’S Efficiency Using Model-Based Data Augmentation, Vinicius Waterkemper Lodetti

Dissertations

A network intrusion detection system (NIDS) is one important element to mitigate cybersecurity risks, the NIDS allow for detecting anomalies in a network which may be a cyberattack to a corporate network environment. A NIDS can be seen as a classification problem where the ultimate goal is to distinguish between malicious traffic among a majority of benign traffic. Researches on NIDS are often performed using outdated datasets that don’t represent the actual cyberspace. Datasets such as the CICIDS2018 address this gap by being generated from attacks and an infrastructure that reflects an up-to-date scenario.

A problem may arise when machine …


Visualization For Solving Non-Image Problems And Saliency Mapping, Divya Chandrika Kalla Jan 2021

Visualization For Solving Non-Image Problems And Saliency Mapping, Divya Chandrika Kalla

All Master's Theses

High-dimensional data play an important role in knowledge discovery and data science. Integration of visualization, visual analytics, machine learning (ML), and data mining (DM) are the key aspects of data science research for high-dimensional data. This thesis is to explore the efficiency of a new algorithm to convert non-images data into raster images by visualizing data using heatmap in the collocated paired coordinates (CPC). These images are called the CPC-R images and the algorithm that produces them is called the CPC-R algorithm. Powerful deep learning methods open an opportunity to solve non-image ML/DM problems by transforming non-image ML problems into …


Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali Jan 2021

Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali

Doctoral Dissertations

"Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem.

This research study developed a rigorous mathematical model and a 3D virtual simulation model to …


Integrating Deep Learning And Augmented Reality To Enhance Situational Awareness In Firefighting Environments, Manish Bhattarai Nov 2020

Integrating Deep Learning And Augmented Reality To Enhance Situational Awareness In Firefighting Environments, Manish Bhattarai

Electrical and Computer Engineering ETDs

We present a new four-pronged approach to build firefighter's situational awareness for the first time in the literature. We construct a series of deep learning frameworks built on top of one another to enhance the safety, efficiency, and successful completion of rescue missions conducted by firefighters in emergency first response settings. First, we used a deep Convolutional Neural Network (CNN) system to classify and identify objects of interest from thermal imagery in real-time. Next, we extended this CNN framework for object detection, tracking, segmentation with a Mask RCNN framework, and scene description with a multimodal natural language processing(NLP) framework. Third, …


Deep Learning For Real-World Object Detection, Xiongwei Wu Jul 2020

Deep Learning For Real-World Object Detection, Xiongwei Wu

Dissertations and Theses Collection (Open Access)

Despite achieving significant progresses, most existing detectors are designed to detect objects in academic contexts but consider little in real-world scenarios. In real-world applications, the scale variance of objects can be significantly higher than objects in academic contexts; In addition, existing methods are designed for achieving localization with relatively low precision, however more precise localization is demanded in real-world scenarios; Existing methods are optimized with huge amount of annotated data, but in certain real-world scenarios, only a few samples are available. In this dissertation, we aim to explore novel techniques to address these research challenges to make object detection algorithms …


Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh May 2020

Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh

Electronic Thesis and Dissertation Repository

Rapid growth in numbers of connected devices, including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power and thus is not well suited for …


Process Data Analytics Using Deep Learning Techniques, Majid Moradi Aliabadi Jan 2020

Process Data Analytics Using Deep Learning Techniques, Majid Moradi Aliabadi

Wayne State University Theses

In chemical manufacturing plants, numerous types of data are accessible, which could be process operational data (historical or real-time), process design and product quality data, economic and environmental (including process safety, waste emission and health impact) data. Effective knowledge extraction from raw data has always been a very challenging task, especially the data needed for a type of study is huge. Other characteristics of process data such as noise, dynamics, and highly correlated process parameters make this more challenging.

In this study, we introduce an attention-based RNN for multi-step-ahead prediction that can have applications in model predictive control, fault diagnosis, …


Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic Jan 2020

Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic

Theses and Dissertations--Computer Science

Understanding free-flow speed is fundamental to transportation engineering in order to improve traffic flow, control, and planning. The free-flow speed of a road segment is the average speed of automobiles unaffected by traffic congestion or delay. Collecting speed data across a state is both expensive and time consuming. Some approaches have been presented to estimate speed using geometric road features for certain types of roads in limited environments. However, estimating speed at state scale for varying landscapes, environments, and road qualities has been relegated to manual engineering and expensive sensor networks. This thesis proposes an automated approach for estimating free-flow …


Computational Model For Neural Architecture Search, Ram Deepak Gottapu Jan 2020

Computational Model For Neural Architecture Search, Ram Deepak Gottapu

Doctoral Dissertations

"A long-standing goal in Deep Learning (DL) research is to design efficient architectures for a given dataset that are both accurate and computationally inexpensive. At present, designing deep learning architectures for a real-world application requires both human expertise and considerable effort as they are either handcrafted by careful experimentation or modified from a handful of existing models. This method is inefficient as the process of architecture design is highly time-consuming and computationally expensive.

The research presents an approach to automate the process of deep learning architecture design through a modeling procedure. In particular, it first introduces a framework that treats …


Using Machine Learning Classification Methods To Detect The Presence Of Heart Disease, Nestor Pereira Dec 2019

Using Machine Learning Classification Methods To Detect The Presence Of Heart Disease, Nestor Pereira

Dissertations

Cardiovascular disease (CVD) is the most common cause of death in Ireland, and probably, worldwide. According to the Health Service Executive (HSE) cardiovascular disease accounting for 36% of all deaths, and one important fact, 22% of premature deaths (under age 65) are from CVD.

Using data from the Heart Disease UCI Data Set (UCI Machine Learning), we use machine learning techniques to detect the presence or absence of heart disease in the patient according to 14 features provide for this dataset. The different results are compared based on accuracy performance, confusion matrix and area under the Receiver Operating Characteristics (ROC) …


Similarity-Based Chained Transfer Learning For Energy Forecasting With Big Data, Yifang Tian, Ljubisa Sehovac, Katarina Grolinger Sep 2019

Similarity-Based Chained Transfer Learning For Energy Forecasting With Big Data, Yifang Tian, Ljubisa Sehovac, Katarina Grolinger

Electrical and Computer Engineering Publications

Smart meter popularity has resulted in the ability to collect big energy data and has created opportunities for large-scale energy forecasting. Machine Learning (ML) techniques commonly used for forecasting, such as neural networks, involve computationally intensive training typically with data from a single building or a single aggregated load to predict future consumption for that same building or aggregated load. With hundreds of thousands of meters, it becomes impractical or even infeasible to individually train a model for each meter. Consequently, this paper proposes Similarity-Based Chained Transfer Learning (SBCTL), an approach for building neural network-based models for many meters by …


Action Recognition In Manufacturing Assembly Using Multimodal Sensor Fusion, Md. Al-Amin, Wenjin Tao, David Doell, Ravon Lingard, Zhaozheng Yin, Ming-Chuan Leu, Ruwen Qin Aug 2019

Action Recognition In Manufacturing Assembly Using Multimodal Sensor Fusion, Md. Al-Amin, Wenjin Tao, David Doell, Ravon Lingard, Zhaozheng Yin, Ming-Chuan Leu, Ruwen Qin

Computer Science Faculty Research & Creative Works

Production innovations are occurring faster than ever. Manufacturing workers thus need to frequently learn new methods and skills. In fast changing, largely uncertain production systems, manufacturers with the ability to comprehend workers' behavior and assess their operation performance in near real-time will achieve better performance than peers. Action recognition can serve this purpose. Despite that human action recognition has been an active field of study in machine learning, limited work has been done for recognizing worker actions in performing manufacturing tasks that involve complex, intricate operations. Using data captured by one sensor or a single type of sensor to recognize …


Forecasting Building Energy Consumption With Deep Learning: A Sequence To Sequence Approach, Ljubisa Sehovac, Cornelius Nesen, Katarina Grolinger Jun 2019

Forecasting Building Energy Consumption With Deep Learning: A Sequence To Sequence Approach, Ljubisa Sehovac, Cornelius Nesen, Katarina Grolinger

Electrical and Computer Engineering Publications

Energy Consumption has been continuously increasing due to the rapid expansion of high-density cities, and growth in the industrial and commercial sectors. To reduce the negative impact on the environment and improve sustainability, it is crucial to efficiently manage energy consumption. Internet of Things (IoT) devices, including widely used smart meters, have created possibilities for energy monitoring as well as for sensor based energy forecasting. Machine learning algorithms commonly used for energy forecasting such as feedforward neural networks are not well-suited for interpreting the time dimensionality of a signal. Consequently, this paper uses Recurrent Neural Networks (RNN) to capture time …


Self-Driving Cars: Evaluation Of Deep Learning Techniques For Object Detection In Different Driving Conditions, Ramesh Simhambhatla, Kevin Okiah, Shravan Kuchkula, Robert Slater May 2019

Self-Driving Cars: Evaluation Of Deep Learning Techniques For Object Detection In Different Driving Conditions, Ramesh Simhambhatla, Kevin Okiah, Shravan Kuchkula, Robert Slater

SMU Data Science Review

Deep Learning has revolutionized Computer Vision, and it is the core technology behind capabilities of a self-driving car. Convolutional Neural Networks (CNNs) are at the heart of this deep learning revolution for improving the task of object detection. A number of successful object detection systems have been proposed in recent years that are based on CNNs. In this paper, an empirical evaluation of three recent meta-architectures: SSD (Single Shot multi-box Detector), R-CNN (Region-based CNN) and R-FCN (Region-based Fully Convolutional Networks) was conducted to measure how fast and accurate they are in identifying objects on the road, such as vehicles, pedestrians, …


Deep Neural Ranking For Crowdsourced Geopolitical Event Forecasting, Giuseppe Nebbione, Derek Doran, Srikanth Nadella, Brandon Minnery May 2019

Deep Neural Ranking For Crowdsourced Geopolitical Event Forecasting, Giuseppe Nebbione, Derek Doran, Srikanth Nadella, Brandon Minnery

Computer Science and Engineering Faculty Publications

There are many examples of “wisdom of the crowd” effects in which the large number of participants imparts confidence in the collective judgment of the crowd. But how do we form an aggregated judgment when the size of the crowd is limited? Whose judgments do we include, and whose do we accord the most weight? This paper considers this problem in the context of geopolitical event forecasting, where volunteer analysts are queried to give their expertise, confidence, and predictions about the outcome of an event. We develop a forecast aggregation model that integrates topical information about a question, meta-data about …