Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Computer Sciences

Deep Learning

University of South Carolina

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Extending The Convolution In Graph Neural Networks To Solve Materials Science And Node Classification Problems, Steph-Yves Mike Louis Jul 2023

Extending The Convolution In Graph Neural Networks To Solve Materials Science And Node Classification Problems, Steph-Yves Mike Louis

Theses and Dissertations

The usage of graph to represent one's data in machine learning has grown in popularity in both academia and the industry due to its inherent benefits. With its flexible nature and immediate translation to real life observed objects, graph representation had a considerable contribution in advancing the state-of-the-art performance of machine learning in materials.

In this dissertation proposal, we discuss how machines can learn from graph encoded data and provide excellent results through graph neural networks (GNN). Notably, we focus our adaptation of graph neural networks on three tasks: predicting crystal materials properties, nullifying the negative impact of inferior graph …


Predicting Material Structures And Properties Using Deep Learning And Machine Learning Algorithms, Yuqi Song Jul 2023

Predicting Material Structures And Properties Using Deep Learning And Machine Learning Algorithms, Yuqi Song

Theses and Dissertations

Discovering new materials and understanding their crystal structures and chemical properties are critical tasks in the material sciences. Although computational methodologies such as Density Functional Theory (DFT), provide a convenient means for calculating certain properties of materials or predicting crystal structures when combined with search algorithms, DFT is computationally too demanding for structure prediction and property calculation for most material families, especially for those materials with a large number of atoms. This dissertation aims to address this limitation by developing novel deep learning and machine learning algorithms for effective prediction of material crystal structures and properties. Our data-driven machine learning …


Deep Learning Based Generative Materials Design, Yong Zhao Apr 2022

Deep Learning Based Generative Materials Design, Yong Zhao

Theses and Dissertations

Discovery of novel functional materials is playing an increasingly important role in many key industries such as lithium batteries for electric vehicles and cell phones. However experimental tinkering of existing materials or Density Functional Theory (DFT) based screening of known crystal structures, two of the major current materials design approaches, are both severely constrained by the limited scale (around 250,000 in ICSD database) and diversity of existing materials and the lack of a sufficient number of materials with annotated properties. How to generate a large number of physically feasible, stable, and synthesizable crystal materials and build accurate property prediction models …


Deep Learning Based Sound Event Detection And Classification, Alireza Nasiri Apr 2021

Deep Learning Based Sound Event Detection And Classification, Alireza Nasiri

Theses and Dissertations

Hearing sense has an important role in our daily lives. During the recent years, there has been many studies to transfer this capability to the computers. In this dissertation, we design and implement deep learning based algorithms to improve the ability of the computers in recognizing the different sound events.

In the first topic, we investigate sound event detection, which identifies the time boundaries of the sound events in addition to the type of the events. For sound event detection, we propose a new method, AudioMask, to benefit from the object-detection techniques in computer vision. In this method, we convert …