Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 108

Full-Text Articles in Engineering

Nonlinear Control Of Facts Controllers For Damping Interarea Oscillations In Power Systems, Mahyar Zarghami, Jagannathan Sarangapani, Mariesa Crow Oct 2010

Nonlinear Control Of Facts Controllers For Damping Interarea Oscillations In Power Systems, Mahyar Zarghami, Jagannathan Sarangapani, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

This paper introduces a new nonlinear control of flexible ac transmission systems (FACTS) controllers for the purpose of damping interarea oscillations in power systems. FACTS controllers consist of series, shunt, or a combination of series-shunt devices which are interfaced with the bulk power system through injection buses. Controlling the angle of these buses can effectively damp low frequency interarea oscillations in the system. The proposed control method is based on finding an equivalent reduced affine nonlinear system for the network from which the dominant machines are extracted based on dynamic coherency. It is shown that if properly selected, measurements obtained …


A Novel Approach To Interarea Oscillation Damping By Unified Power Flow Controllers Utilizing Ultracapacitors, Mahyar Zarghami, Mariesa Crow, Jagannathan Sarangapani, Yilu Liu, Stan Atcitty Feb 2010

A Novel Approach To Interarea Oscillation Damping By Unified Power Flow Controllers Utilizing Ultracapacitors, Mahyar Zarghami, Mariesa Crow, Jagannathan Sarangapani, Yilu Liu, Stan Atcitty

Electrical and Computer Engineering Faculty Research & Creative Works

This paper discusses a novel approach for damping interarea oscillations in a bulk power network using multiple unified power flow controllers (UPFCs) utilizing ultracapacitors, also known more generally as electrochemical capacitors (ECs). In this paper, a new control is introduced to mitigate interarea oscillations by directly controlling the UPFCs' sending and receiving bus voltages that better utilizes the stored energy in the ECs. The results of this controller are compared with and without ECs. The proposed control provides better interarea oscillation mitigation when applied to multiple UPFCs in the 118-bus IEEE test system.


Novel Dynamic Representation And Control Of Power Systems With Facts Devices, Shahab Mehraeen, Jagannathan Sarangapani, Mariesa Crow Jan 2010

Novel Dynamic Representation And Control Of Power Systems With Facts Devices, Shahab Mehraeen, Jagannathan Sarangapani, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

FACTS devices have been shown to be useful in damping power system oscillations. However, in large power systems, the FACTS control design is complex due to the combination of differential and algebraic equations required to model the power system. In this paper, a new method to generate a nonlinear dynamic representation of the power network is introduced to enable more sophisticated control design. Once the new representation is obtained, a back stepping methodology for the UPFC is utilized to mitigate the generator oscillations. Finally, the neural network approximation property is utilized to relax the need for knowledge of the power …


Adaptive Distributed Fair Scheduling For Multiple Channels In Wireless Sensor Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani, Steve Eugene Watkins, James W. Fonda Nov 2009

Adaptive Distributed Fair Scheduling For Multiple Channels In Wireless Sensor Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani, Steve Eugene Watkins, James W. Fonda

Electrical and Computer Engineering Faculty Research & Creative Works

A novel adaptive and distributed fair scheduling (ADFS) scheme for wireless sensor networks (WSN) in the presence of multiple channels (MC-ADFS) is developed. The proposed MC-ADFS increases available network capacity and focuses on quality-of-service (QoS) issues. when nodes access a shared channel, the proposed MC-ADFS allocates the channel bandwidth proportionally to the packet's weight which indicates the priority of the packet's flow. The packets are dynamically assigned to channels based on the packet weight and current channel utilization. The dynamic assignment of channels is facilitated by use of receiver-based allocation and alternative routes. Moreover, MC-ADFS allows the dynamic allocation of …


Reinforcement-Learning-Based Output-Feedback Control Of Nonstrict Nonlinear Discrete-Time Systems With Application To Engine Emission Control, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Oct 2009

Reinforcement-Learning-Based Output-Feedback Control Of Nonstrict Nonlinear Discrete-Time Systems With Application To Engine Emission Control, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning-based output adaptive neural network (NN) controller, which is also referred to as the adaptive-critic NN controller, is developed to deliver the desired tracking performance for a class of nonlinear discrete-time systems expressed in nonstrict feedback form in the presence of bounded and unknown disturbances. The adaptive-critic NN controller consists of an observer, a critic, and two action NNs. The observer estimates the states and output, and the two action NNs provide virtual and actual control inputs to the nonlinear discrete-time system. The critic approximates a certain strategic utility function, and the action NNs minimize the strategic utility …


Reliability Analysis For The Advanced Electric Power Grid: From Cyber Control And Communication To Physical Manifestations Of Failure, Ayman Z. Faza, Sahra Sedigh, Bruce M. Mcmillin Sep 2009

Reliability Analysis For The Advanced Electric Power Grid: From Cyber Control And Communication To Physical Manifestations Of Failure, Ayman Z. Faza, Sahra Sedigh, Bruce M. Mcmillin

Electrical and Computer Engineering Faculty Research & Creative Works

The advanced electric power grid is a cyber-physical system comprised of physical components, such as transmission lines and generators, and a network of embedded systems deployed for their cyber control. The objective of this paper is to qualitatively and quantitatively analyze the reliability of this cyber-physical system. The original contribution of the approach lies in the scope of failures analyzed, which crosses the cyber-physical boundary by investigating physical manifestations of failures in cyber control. As an example of power electronics deployed to enhance and control the operation of the grid, we study Flexible AC Transmission System (FACTS) devices, which are …


Rfid-Based Smart Freezer, Ahmet Soylemezoglu, Maciej Jan Zawodniok, Jagannathan Sarangapani Jul 2009

Rfid-Based Smart Freezer, Ahmet Soylemezoglu, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a novel radio-frequency identification (RFID)-based smart freezer using a new inventory-management scheme for extremely low temperature environments. The proposed solution utilizes backpressure inventory control, systematic selection of antenna configuration, and antenna power control. The proposed distributed-inventory-control (DIC) scheme dictates the amount of items transferred through the supply chain. when a high item visibility is ensured, the control scheme maintains the desired level of inventory at each supply-chain echelon. The performance of the DIC scheme is guaranteed using a Lyapunov-based analysis. The proposed RFID antenna-configuration design methodology coupled with locally asymptotically stable distributed power control ensures a 99% …


Dynamic Channel Allocation In Wireless Networks Using Adaptive Learning Automata, Behdis Eslamnour, Maciej Jan Zawodniok, Jagannathan Sarangapani Apr 2009

Dynamic Channel Allocation In Wireless Networks Using Adaptive Learning Automata, Behdis Eslamnour, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

The bandwidth utilization of a single channel-based wireless networks decreases due to congestion and interference from other sources and therefore transmission on multiple channels are needed. In this paper, we propose a distributed dynamic channel allocation scheme for wireless networks using adaptive learning automata whose nodes are equipped with single radio interfaces so that a more suitable channel can be selected. The proposed scheme, adaptive pursuit reward-inaction, runs periodically on the nodes, and adaptively finds the suitable channel allocation in order to attain a desired performance. A novel performance index, which takes into account the throughput and the energy consumption, …


Neural Network Control Of Mobile Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks Apr 2009

Neural Network Control Of Mobile Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, an asymptotically stable (AS) combined kinematic/torque control law is developed for leader-follower-based formation control using backstepping in order to accommodate the complete dynamics of the robots and the formation, and a neural network (NN) is introduced along with robust integral of the sign of the error feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are as and that the NN weights are bounded as opposed to uniformly ultimately bounded stability which is typical with most …


A Multi-Interface Multi-Channel Routing (Mmcr) Protocol For Wireless Ad Hoc Networks, Reghu Anguswamy, Maciej Jan Zawodniok, Jagannathan Sarangapani Apr 2009

A Multi-Interface Multi-Channel Routing (Mmcr) Protocol For Wireless Ad Hoc Networks, Reghu Anguswamy, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Multiple non-interfering channels are available in 802.11 and 802.15.4 based wireless networks. Capacity of such channels can be combined to achieve a better performance thus providing a higher quality of service (QoS) than for a single channel network. However, existing routing protocols often are not suited to fully take advantage of these channels. The proposed multi-interface multi-channel routing (MMCR) protocol considers various QoS parameters such as throughput, end-to-end delay, and energy utilization as a single unified cost metric and identifies the route that optimizes the cost metric and balances the traffic among the channels on a per flow basis. Multipoint …


Generalized Neuron Based Secure Media Access Control Protocol For Wireless Sensor Networks, Raghavendra V. Kulkarni, Ganesh K. Venayagamoorthy, Abhishek V. Thakur, Sanjay Kumar Madria Mar 2009

Generalized Neuron Based Secure Media Access Control Protocol For Wireless Sensor Networks, Raghavendra V. Kulkarni, Ganesh K. Venayagamoorthy, Abhishek V. Thakur, Sanjay Kumar Madria

Electrical and Computer Engineering Faculty Research & Creative Works

Security plays a pivotal role in most applications of wireless sensor networks. It is common to find inadequately secure networks confined only to controlled environments. The issue of security in wireless sensor networks is a hot research topic for over a decade. This paper presents a compact generalized neuron (GN) based medium access protocol that renders a CSMA/CD network secure against denial-of-service attacks launched by adversaries. The GN enhances the security by constantly monitoring multiple parameters that reflect the possibility that an attack is launched by an adversary. Particle swarm optimization, a popular bio-inspired evolutionary-like optimization algorithm is used for …


An Improved Upfc Control For Oscillation Damping, Jagannathan Sarangapani, Mariesa Crow, Jianjun Guo Jan 2009

An Improved Upfc Control For Oscillation Damping, Jagannathan Sarangapani, Mariesa Crow, Jianjun Guo

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes a new control approach for a unified power flow controller (UPFC) for power system oscillation damping. This control is simple to implement, yet is valid over a wide range of operating conditions. It is also effective in the presence of multiple modes of oscillation. The proposed control is implemented in several test systems and is compared against a traditional PI control.


A Model Based Fault Detection And Prognostic Scheme For Uncertain Nonlinear Discrete-Time Systems, Balaje T. Thumati, Jagannathan Sarangapani Dec 2008

A Model Based Fault Detection And Prognostic Scheme For Uncertain Nonlinear Discrete-Time Systems, Balaje T. Thumati, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A new fault detection and prognostics (FDP) framework is introduced for uncertain nonlinear discrete time system by using a discrete-time nonlinear estimator which consists of an online approximator. A fault is detected by monitoring the deviation of the system output with that of the estimator output. Prior to the occurrence of the fault, this online approximator learns the system uncertainty. In the event of a fault, the online approximator learns both the system uncertainty and the fault dynamics. A stable parameter update law in discrete-time is developed to tune the parameters of the online approximator. This update law is also …


Neural Network Output Feedback Control Of A Quadrotor Uav, Jagannathan Sarangapani, Travis Alan Dierks Dec 2008

Neural Network Output Feedback Control Of A Quadrotor Uav, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

A neural network (NN) based output feedback controller for a quadrotor unmanned aerial vehicle (UAV) is proposed. The NNs are utilized in the observer and for generating virtual and actual control inputs, respectively, where the NNs learn the nonlinear dynamics of the UAV online including uncertain nonlinear terms like aerodynamic friction and blade flapping. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semi-globally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional …


Neural-Network-Based State Feedback Control Of A Nonlinear Discrete-Time System In Nonstrict Feedback Form, Pingan He, Jagannathan Sarangapani Dec 2008

Neural-Network-Based State Feedback Control Of A Nonlinear Discrete-Time System In Nonstrict Feedback Form, Pingan He, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights …


A Model Based Fault Detection Scheme For Nonlinear Multivariable Discrete-Time Systems, Balaje T. Thumati, Jagannathan Sarangapani Oct 2008

A Model Based Fault Detection Scheme For Nonlinear Multivariable Discrete-Time Systems, Balaje T. Thumati, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel robust scheme is developed for detecting faults in nonlinear discrete time multi-input and multi-output systems in contrast with the available schemes that are developed in continuous-time. Both state and output faults are addressed by considering separate time profiles. The faults, which could be incipient or abrupt, are modeled using input and output signals of the system. By using nonlinear estimation techniques, the discrete-time system is monitored online. Once a fault is detected, its dynamics are characterized using an online approximator. A stable parameter update law is developed for the online approximator scheme in discrete-time. The …


Joint Adaptive Distributed Rate And Power Control For Wireless Networks, James W. Fonda, Jagannathan Sarangapani, Steve Eugene Watkins Oct 2008

Joint Adaptive Distributed Rate And Power Control For Wireless Networks, James W. Fonda, Jagannathan Sarangapani, Steve Eugene Watkins

Electrical and Computer Engineering Faculty Research & Creative Works

A novel adaptive distributed rate and power control (ADRPC) protocol is introduced for wireless networks. The proposed controller contrasts from others by providing nonlinear compensation to the problem of transmission power and bit-rate adaptation. The protocol provides control of both signal-to-interference ratio (SIR) and quality-of-service (QoS) support to bit-rate adaptation. Bit-rate adaptation is performed by local estimation of congestion levels, rendering little packet overhead, using Lyapunov based adaptive control methods. Performance of the proposed control scheme is shown through analytical proof and simulation examples.


Novel Dynamic Representation And Control Of Power Networks Embedded With Facts Devices, Shahab Mehraeen, Jagannathan Sarangapani, Mariesa Crow Oct 2008

Novel Dynamic Representation And Control Of Power Networks Embedded With Facts Devices, Shahab Mehraeen, Jagannathan Sarangapani, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

FACTS devices have been shown to be powerful in damping power system oscillations caused by faults; however, in the multi machine control using FACTS, the control problem involves solving differential-algebraic equations of a power network which renders the available control schemes ineffective due to heuristic design and lack of know how to incorporate FACTS into the network. A method to generate nonlinear dynamic representation of a power system consisting of differential equations alone with universal power flow controller (UPFC) is introduced since differential equations are typically preferred for controller development. Subsequently, backstepping methodology is utilized to reduce the generator oscillations …


Optimal Energy-Delay Routing Protocol With Trust Levels For Wireless Ad Hoc Networks, Eyad Taqieddin, Ann K. Miller, Jagannathan Sarangapani Sep 2008

Optimal Energy-Delay Routing Protocol With Trust Levels For Wireless Ad Hoc Networks, Eyad Taqieddin, Ann K. Miller, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents the Trust Level Routing (TLR) pro- tocol, an extension of the optimized energy-delay rout- ing (OEDR) protocol, focusing on the integrity, reliability and survivability of the wireless network. TLR is similar to OEDR in that they both are link state routing proto- cols that run in a proactive mode and adopt the concept of multi-point relay (MPR) nodes. However, TLR aims at incorporating trust levels into routing by frequently changing the MPR nodes as well as authenticating the source node and contents of control packets. TLR calcu- lates the link costs based on a composite metric (delay …


Damping Inter-Area Oscillations By Upfcs Based On Selected Global Measurements, Mahyar Zarghami, Yilu Liu, Jagannathan Sarangapani, Mariesa Crow Jul 2008

Damping Inter-Area Oscillations By Upfcs Based On Selected Global Measurements, Mahyar Zarghami, Yilu Liu, Jagannathan Sarangapani, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

This paper introduces a method of using a selected set of the global data for controlling inter-area oscillations of the power network using unified power flow controllers. This novel algorithm utilizes reduced order observers for estimating the missing data the purpose of control when all the data is unavailable through frequency measurements in a wide area control approach. The paper will also address the problem of time-delay in data acquisition through examples.


Missouri S&T Mote-Based Demonstration Of Energy Monitoring Solution For Network Enabled Manufacturing Using Wireless Sensor Networks (Wsn), James W. Fonda, Maciej Jan Zawodniok, Al Salour, Jagannathan Sarangapani, Donald Miller Apr 2008

Missouri S&T Mote-Based Demonstration Of Energy Monitoring Solution For Network Enabled Manufacturing Using Wireless Sensor Networks (Wsn), James W. Fonda, Maciej Jan Zawodniok, Al Salour, Jagannathan Sarangapani, Donald Miller

Electrical and Computer Engineering Faculty Research & Creative Works

In this work, an inexpensive electric utilities monitoring solution using wireless sensor networks is demonstrated that can easily be installed, deployed, maintained and eliminate unnecessary energy costs and effort. The monitoring solution is designed to support network enabled manufacturing (NEM) program using Missouri University of Science and Technology (MST), formerly the University of Missouri-Rolla (UMR), motes.


Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Mar 2008

Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines operating at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle bifurcation of heat release. Past literature suggests that operating an engine under such lean conditions can significantly reduce NO emissions by as much as 30% and improve fuel efficiency by as much as 5%-10%. At lean conditions, the heat release per engine cycle is not close to constant, as it is when these engines operate under stoichiometric conditions where the equivalence ratio is 1.0. A neural network controller employing output feedback has shown ability in simulation to reduce the nonlinear cyclic dispersion observed under …


Automatic Drift Compensation Using Phase Correlation Method For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani, Eric W. Bohannan Mar 2008

Automatic Drift Compensation Using Phase Correlation Method For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani, Eric W. Bohannan

Electrical and Computer Engineering Faculty Research & Creative Works

Nanomanipulation and nanofabrication with an atomic force microscope (AFM) or other scanning probe microscope (SPM) are a precursor for nanomanufacturing. It is still a challenging task to accomplish nanomanipulation automatically. In ambient conditions without stringent environmental controls, the task of nanomanipulation requires extensive human intervention to compensate for the spatial uncertainties of the SPM. Among these uncertainties, the thermal drift, which affects spatial resolution, is especially hard to solve because it tends to increase with time, and cannot be compensated simultaneously by feedback from the instrument. In this paper, a novel automatic compensation scheme is introduced to measure and estimate …


A Suite Of Robust Controllers For The Manipulation Of Microscale Objects, Qinmin Yang, Jagannathan Sarangapani Feb 2008

A Suite Of Robust Controllers For The Manipulation Of Microscale Objects, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A suite of novel robust controllers is introduced for the pickup operation of microscale objects in a microelectromechanical system (MEMS). In MEMS, adhesive, surface tension, friction, and van der Waals forces are dominant. Moreover, these forces are typically unknown. The proposed robust controller overcomes the unknown contact dynamics and ensures its performance in the presence of actuator constraints by assuming that the upper bounds on these forces are known. On the other hand, for the robust adaptive critic-based neural network (NN) controller, the unknown dynamic forces are estimated online. It consists of an action NN for compensating the unknown system …


Generalized Hamilton-Jacobi-Bellman Formulation-Based Neural Network Control Of Affine Nonlinear Discrete-Time Systems, Zheng Chen, Jagannathan Sarangapani Jan 2008

Generalized Hamilton-Jacobi-Bellman Formulation-Based Neural Network Control Of Affine Nonlinear Discrete-Time Systems, Zheng Chen, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, we consider the use of nonlinear networks towards obtaining nearly optimal solutions to the control of nonlinear discrete-time (DT) systems. The method is based on least squares successive approximation solution of the generalized Hamilton-Jacobi-Bellman (GHJB) equation which appears in optimization problems. Successive approximation using the GHJB has not been applied for nonlinear DT systems. The proposed recursive method solves the GHJB equation in DT on a well-defined region of attraction. The definition of GHJB, pre-Hamiltonian function, HJB equation, and method of updating the control function for the affine nonlinear DT systems under small perturbation assumption are proposed. …


Effects Of Electromagnetic Interference On Control Area Network Performance, Fei Ren, Y. Rosa Zheng, Maciej Jan Zawodniok, Jagannathan Sarangapani Nov 2007

Effects Of Electromagnetic Interference On Control Area Network Performance, Fei Ren, Y. Rosa Zheng, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, the effects of electromagnetic interference (EMI) on control area network (CAN) communications are investigated by hardware experiments. Distinct CAN bit rates, communication cables, and networks are used to test effects of EMI on CAN bus. Waveforms of CAN data frames in EMI environment are observed and analyzed for figuring out details of effects. Experiments show that the EMI pulses frequently encountered in automobile and off-road machinery can cause the reduction of bit rates and errors in high-speed CAN communications. Replacing traditional unshielded parallel communication cables with shielded communication cables is proved to be an effective method of …


Predictive Congestion Control Protocol For Wireless Sensor Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani Nov 2007

Predictive Congestion Control Protocol For Wireless Sensor Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Available congestion control schemes, for example transport control protocol (TCP), when applied to wireless networks, result in a large number of packet drops, unfair scenarios and low throughputs with a significant amount of wasted energy due to retransmissions. To fully utilize the hop by hop feedback information, this paper presents a novel, decentralized, predictive congestion control (DPCC) for wireless sensor networks (WSN). The DPCC consists of an adaptive flow and adaptive back-off interval selection schemes that work in concert with energy efficient, distributed power control (DPC). The DPCC detects the onset of congestion using queue utilization and the embedded channel …


Comparisons Of An Adaptive Neural Network Based Controller And An Optimized Conventional Power System Stabilizer, Wenxin Liu, Ganesh K. Venayagamoorthy, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes Oct 2007

Comparisons Of An Adaptive Neural Network Based Controller And An Optimized Conventional Power System Stabilizer, Wenxin Liu, Ganesh K. Venayagamoorthy, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes

Electrical and Computer Engineering Faculty Research & Creative Works

Power system stabilizers are widely used to damp out the low frequency oscillations in power systems. In power system control literature, there is a lack of stability analysis for proposed controller designs. This paper proposes a Neural Network (NN) based stabilizing controller design based on a sixth order single machine infinite bus power system model. The NN is used to compensate the complex nonlinear dynamics of power system. To speed up the learning process, an adaptive signal is introduced to the NN's weights updating rule. The NN can be directly used online without offline training process. Magnitude constraint of the …


Neural Network Based Decentralized Controls Of Large Scale Power Systems, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes Oct 2007

Neural Network Based Decentralized Controls Of Large Scale Power Systems, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a suite of neural network (NN) based decentralized controller designs for large scale power systems' generators, one is for the excitation control and the other is for the steam valve control. Though the control inputs are calculated using local signals, the transient and overall system stability can be guaranteed. NNs are used to approximate the unknown and/or imprecise dynamics of the local power system dynamics and the inter-connection terms, thus the requirements for exact system parameters are relaxed. Simulation studies with a three-machine power system demonstrate the effectiveness of the proposed controller designs.


Energy-Efficient Hybrid Key Management Protocol For Wireless Sensor Networks, Timothy J. Landstra, Maciej Jan Zawodniok, Jagannathan Sarangapani Oct 2007

Energy-Efficient Hybrid Key Management Protocol For Wireless Sensor Networks, Timothy J. Landstra, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, we propose a subnetwork key management strategy in which the heterogeneous security requirements of a wireless sensor network are considered to provide differing levels of security with minimum communication overhead. Additionally, it allows the dynamic creation of high security subnetworks within the wireless sensor network and provides subnetworks with a mechanism for dynamically creating a secure key using a novel and dynamic group key management protocol. The proposed energy-efficient protocol utilizes a combination of pre-deployed group keys and initial trustworthiness of nodes to create a level of trust between neighbors in the network. This trust is later …