Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Computer Sciences

Electrical and Computer Engineering Faculty Research & Creative Works

Adaptive Control

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Joint Adaptive Distributed Rate And Power Control For Wireless Networks, James W. Fonda, Jagannathan Sarangapani, Steve Eugene Watkins Oct 2008

Joint Adaptive Distributed Rate And Power Control For Wireless Networks, James W. Fonda, Jagannathan Sarangapani, Steve Eugene Watkins

Electrical and Computer Engineering Faculty Research & Creative Works

A novel adaptive distributed rate and power control (ADRPC) protocol is introduced for wireless networks. The proposed controller contrasts from others by providing nonlinear compensation to the problem of transmission power and bit-rate adaptation. The protocol provides control of both signal-to-interference ratio (SIR) and quality-of-service (QoS) support to bit-rate adaptation. Bit-rate adaptation is performed by local estimation of congestion levels, rendering little packet overhead, using Lyapunov based adaptive control methods. Performance of the proposed control scheme is shown through analytical proof and simulation examples.


Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Mar 2008

Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines operating at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle bifurcation of heat release. Past literature suggests that operating an engine under such lean conditions can significantly reduce NO emissions by as much as 30% and improve fuel efficiency by as much as 5%-10%. At lean conditions, the heat release per engine cycle is not close to constant, as it is when these engines operate under stoichiometric conditions where the equivalence ratio is 1.0. A neural network controller employing output feedback has shown ability in simulation to reduce the nonlinear cyclic dispersion observed under …


Comparisons Of An Adaptive Neural Network Based Controller And An Optimized Conventional Power System Stabilizer, Wenxin Liu, Ganesh K. Venayagamoorthy, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes Oct 2007

Comparisons Of An Adaptive Neural Network Based Controller And An Optimized Conventional Power System Stabilizer, Wenxin Liu, Ganesh K. Venayagamoorthy, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes

Electrical and Computer Engineering Faculty Research & Creative Works

Power system stabilizers are widely used to damp out the low frequency oscillations in power systems. In power system control literature, there is a lack of stability analysis for proposed controller designs. This paper proposes a Neural Network (NN) based stabilizing controller design based on a sixth order single machine infinite bus power system model. The NN is used to compensate the complex nonlinear dynamics of power system. To speed up the learning process, an adaptive signal is introduced to the NN's weights updating rule. The NN can be directly used online without offline training process. Magnitude constraint of the …


Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jul 2007

Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. …


Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani Jan 2007

Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation. In the online NN reinforcement learning method, one NN is designated as the critic NN, which approximates the long-term cost function by assuming that the states of the nonlinear systems is available for measurement. An action NN is employed to derive an optimal control signal to track a desired system trajectory while minimizing the cost function. Online updating weight tuning schemes for these two NNs are also derived. By using the Lyapunov approach, …


Neural Network Controller Development And Implementation For Spark Ignition Engines With High Egr Levels, Jonathan B. Vance, Atmika Singh, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jan 2007

Neural Network Controller Development And Implementation For Spark Ignition Engines With High Egr Levels, Jonathan B. Vance, Atmika Singh, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10% -25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate …


Adaptive Neural Network Control And Wireless Sensor Network Based Localization For Uav Formation, H. Wu, Jagannathan Sarangapani Jun 2006

Adaptive Neural Network Control And Wireless Sensor Network Based Localization For Uav Formation, H. Wu, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

We consider a team of unmanned aerial vehicles (UAV's) equipped with sensors and motes for wireless communication for the task of navigating to a desired location in a formation. First a neural network (NN)-based control scheme is presented that allows the UAVs to track a desired position and orientation with reference to the neighboring UAVs or obstacles in the environment. Second, we discuss a graph theory-based scheme for discovery, localization and cooperative control. The purpose of the NN cooperative controller is to achieve and maintain the desired formation shape in the presence of unmodeled dynamics and bounded unknown disturbances. Numerical …


Nanomanipulation Using Atomic Force Microscope With Drift Compensation, Qinmin Yang, Jagannathan Sarangapani Jun 2006

Nanomanipulation Using Atomic Force Microscope With Drift Compensation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes an atomic force microscope (AFM) based force controller to push nanoparticles on the substrates since it is tedious for human. A block phase correlation-based algorithm is embedded into the controller for compensating the thermal drift during nanomanipulation. Further, a neural network (NN) is employed to approximate the unknown nanoparticle and substrate contact dynamics including the roughness effects. Using the NN-based adaptive force controller the task of pushing nanoparticles is demonstrated. Finally, using the Lyapunov-based stability analysis, the uniform ultimately boundedness (UUB) of the closed-loop signals is demonstrated


Decentralized Power Control With Implementation For Rfid Networks, Kainan Cha, Anil Ramachandran, David Pommerenke, Jagannathan Sarangapani Jan 2006

Decentralized Power Control With Implementation For Rfid Networks, Kainan Cha, Anil Ramachandran, David Pommerenke, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In radio frequency identification (RFID) systems, the detection range and read rates will suffer from interference among high power reading devices. This problem grows severely and degrades system performance in dense RFID networks. In this paper, we investigate a suite of feasible power control schemes to ensure overall coverage area of the system while maintaining a desired read rate. The power control scheme and MAC protocol dynamically adjusts the RFID reader power output in response to the interference level seen locally during tag reading for an acceptable signal-to-noise ratio (SNR). We present novel distributed adaptive power control (DAPC) and probabilistic …


A Robust Controller For The Manipulation Of Micro Scale Objects, Qinmin Yang, Jagannathan Sarangapani Jan 2005

A Robust Controller For The Manipulation Of Micro Scale Objects, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A suite of novel robust controllers is presented for the manipulation and handling of micro-scale objects in a micro-electromechanical system (MEMS) where adhesive, surface tension, friction and van der Waals forces are dominant. Moreover, these forces are typically unknown. The robust controller overcomes the unknown system dynamics and ensures the performance in the presence of actuator constraints by assuming that the upper bounds on these forces are known. On the other hand, for the robust adaptive controller, the unknown forces are estimated online. Using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the closed-loop manipulation error is shown for …


Adaptive Critic-Based Neural Network Controller For Uncertain Nonlinear Systems With Unknown Deadzones, Pingan He, Jagannathan Sarangapani, S. N. Balakrishnan Jan 2002

Adaptive Critic-Based Neural Network Controller For Uncertain Nonlinear Systems With Unknown Deadzones, Pingan He, Jagannathan Sarangapani, S. N. Balakrishnan

Electrical and Computer Engineering Faculty Research & Creative Works

A multilayer neural network (NN) controller in discrete-time is designed to deliver a desired tracking performance for a class of nonlinear systems with input deadzones. This multilayer NN controller has an adaptive critic NN architecture with two NNs for compensating the deadzone nonlinearity and a third NN for approximating the dynamics of the nonlinear system. A reinforcement learning scheme in discrete-time is proposed for the adaptive critic NN deadzone compensator, where the learning is performed based on a certain performance measure, which is supplied from a critic. The adaptive generating NN rejects the errors induced by the deadzone whereas a …