Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Series

2018

Institution
Keyword
Publication
File Type

Articles 211 - 216 of 216

Full-Text Articles in Engineering

Photonic Crystal-Supported Long-Range Surface Plasmon-Polaritons Propagating Along High-Quality Silver Nanofilms, Sergey K. Sekatskii, Anton Smirnov, Giovanni Dietler, Mohammad Nur E. Alam, Mikhail Vasiliev, Kamal Alameh Jan 2018

Photonic Crystal-Supported Long-Range Surface Plasmon-Polaritons Propagating Along High-Quality Silver Nanofilms, Sergey K. Sekatskii, Anton Smirnov, Giovanni Dietler, Mohammad Nur E. Alam, Mikhail Vasiliev, Kamal Alameh

Research outputs 2014 to 2021

Long-range surface plasmon-polaritons (LRSPP) with a propagation length equal to 180 microns at the wavelength of 633 nm have been observed at the interface of 12.5 nm-thick silver nanofilm, coated by a 20 nm-thick protective ZnS layer, with air. Their propagation has been supported by a specially prepared 40-layer 1D Photonic Crystal designed in such a manner that silver layer has been deposited directly onto thin ZnS layer, earlier shown to be a non-oxide material most suitable for the preparation of high-quality thin silver nanofilms.


Homogenization And Growth Behavior Of Second-Phase Particles In A Deformed Zr-Sn-Nb-Fe-Cu-Si-O Alloy, Liang-Yu Chen, Peng Sang, Lina Zhang, Dongpo Song, Yanqiu Chu, Linjiang Chai, Laichang Zhang Jan 2018

Homogenization And Growth Behavior Of Second-Phase Particles In A Deformed Zr-Sn-Nb-Fe-Cu-Si-O Alloy, Liang-Yu Chen, Peng Sang, Lina Zhang, Dongpo Song, Yanqiu Chu, Linjiang Chai, Laichang Zhang

Research outputs 2014 to 2021

Homogeneous distribution of fine second-phase particles (SPPs) fabricated by cycles of deformation and annealing in zirconium alloys is a critical consideration for the corrosion resistance of fuel claddings. Different deformation degrees of zirconium alloys would result in distinctive microstructures, leading to a distinct growth of SPPs during subsequent annealing. Unfortunately, the homogenization and growth behavior of SPPs in deformed zirconium alloys have not been well studied. In this work, a β-quenched Zr–Sn–Nb–Fe–Cu–Si–O alloy was rolled and annealed at 580◦C or 680◦C. The morphologies, distributions, and sizes of SPPs resulting from the different processing procedures were investigated. A linear distribution of …


Turbulence, Entrainment And Low-Order Description Of A Transitional Variable-Density Jet, Bianca Viggiano, Tamara S. Dib, N. Ali, L. G. Mastin, Raúl Bayoán Cal, S. A. Solovitz Jan 2018

Turbulence, Entrainment And Low-Order Description Of A Transitional Variable-Density Jet, Bianca Viggiano, Tamara S. Dib, N. Ali, L. G. Mastin, Raúl Bayoán Cal, S. A. Solovitz

Mechanical and Materials Engineering Faculty Publications and Presentations

Geophysical flows occur over a large range of scales, with Reynolds numbers and Richardson numbers varying over several orders of magnitude. For this study, jets of different densities were ejected vertically into a large ambient region, considering conditions relevant to some geophysical phenomena. Using particle image velocimetry, the velocity fields were measured for three different gases exhausting into air – specifically helium, air and argon. Measurements focused on both the jet core and the entrained ambient. Experiments considered relatively low Reynolds numbers from approximately 1500 to 10 000 with Richardson numbers near 0.001 in magnitude. These included a variety of …


Effect Of Curing Rate On The Microstructure And Macroscopic Properties Of Epoxy Fiberglass Composites, Ammar Patel, Olesksandr Kravchenko, Ica Manas-Zloczower Jan 2018

Effect Of Curing Rate On The Microstructure And Macroscopic Properties Of Epoxy Fiberglass Composites, Ammar Patel, Olesksandr Kravchenko, Ica Manas-Zloczower

Mechanical & Aerospace Engineering Faculty Publications

Curing rates of an epoxy amine system were varied via different curing cycles, and glass-fiber epoxy composites were prepared using the same protocol, with the aim of investigating the correlation between microstructure and composite properties. It was found that the fast curing cycle resulted in a non-homogenous network, with a larger percentage of a softer phase. Homogenized composite properties, namely storage modulus and quasi-static intra-laminar shear strength, remained unaffected by the change in resin microstructure. However, fatigue tests revealed a significant reduction in fatigue life for composites cured at fast curing rates, while composites with curing cycles that allowed a …


Pathways For Mitigating Thermal Losses In Solar Photovoltaics, Rodolphe Vaillon, Oliver Dupre, Raúl Bayoán Cal, Marc Calaf Jan 2018

Pathways For Mitigating Thermal Losses In Solar Photovoltaics, Rodolphe Vaillon, Oliver Dupre, Raúl Bayoán Cal, Marc Calaf

Mechanical and Materials Engineering Faculty Publications and Presentations

To improve the performance of solar photovoltaic devices one should mitigate three types of losses: optical, electrical and thermal. However, further reducing the optical and electrical losses in modern photovoltaic devices is becoming increasingly costly. Therefore, there is a rising interest in minimizing the thermal losses. These correspond to the reduction in electrical power output resultant of working at temperatures above 25 °C and the associated accelerated aging. Here, we quantify the impact of all possible strategies to mitigate thermal losses in the case of the mainstream crystalline silicon technology. Results indicate that ensuring a minimum level of conductive/convective cooling …


Novel Contact Materials For Improved Performance Cdte Solar Cells, Angus Rocket, Robert Collins, Sylvain Marsillac Jan 2018

Novel Contact Materials For Improved Performance Cdte Solar Cells, Angus Rocket, Robert Collins, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

This program has explored a number of novel materials for contacts to CdTe solar cells in order to reduce the back contact Schottky barrier to zero and produce an ohmic contact. The project tested a wide range of potential contact materials including TiN, ZrN, CuInSe2:N, a-Si:H and alloys with C, and FeS2. Improved contacts were achieved with FeS2. As part of understanding the operation of the devices and controlling the deposition processes, a number of other important results were obtained. In the process of this project and following its conclusion it led to research …