Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 113

Full-Text Articles in Engineering

A Non-Destructive Evaluation Application Using Software Defined Radios And Bandwidth Expansion, Nicholas J. O'Brien Mar 2020

A Non-Destructive Evaluation Application Using Software Defined Radios And Bandwidth Expansion, Nicholas J. O'Brien

Theses and Dissertations

The development of low-complexity, lightweight and low-cost Non-Destructive Evaluation (NDE) equipment for microwave device testing is desirable from a maintenance efficiency and operational availability perspective. Current NDE equipment tends to be custom-designed, cumbersome and expensive. Software Defined Radio (SDR) technology, and a bandwidth expansion technique that exploits a priori transmit signal knowledge and auto-correlation provides a solution. This research investigated the reconstruction of simultaneous SDR receiver instantaneous bandwidth (sub-band) collections using single, dual and multiple SDR receivers. The adjacent sub-bands, collectively spanning a transmit signal bandwidth were auto-correlated with a replica transmit signal to restore frequency and phase offsets. The …


Signal Quality Monitoring Of Gnss Signals Using A Chip Shape Deformation Metric, Nicholas C. Echeverry Mar 2020

Signal Quality Monitoring Of Gnss Signals Using A Chip Shape Deformation Metric, Nicholas C. Echeverry

Theses and Dissertations

The Global Navigation Satellite System continues to become deeply em-bedded within modern civilization, and is depended on for confident, accurate navigation information. High precision position and timing accuracy is typically achieved using differential processing, however these systems provide limited compensation for distortions caused by multi-path or faulty satellite hardware. Signal Quality Monitoring (SQM) aims to provide confidence in a receivers Position, Navigation, and Timing solution and to offer timely warnings in the event that signal conditions degrade to unsafe levels. The methods presented in this document focus on implementing effective SQM using low-cost Commercial Off-the-Shelf equipment, a Software Defined Radio, …


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham Mar 2020

Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham

Theses and Dissertations

Visual Simultaneous Localization and Mapping (VSLAM) algorithms have evolved rapidly in the last few years, however there has been little research evaluating current algorithm's effectiveness and limitations when applied to tracking the position of a fixed-wing aerial vehicle. This research looks to evaluate current monocular VSLAM algorithms' performance on aerial vehicle datasets using the SLAMBench2 benchmarking suite. The algorithms tested are MonoSLAM, PTAM, OKVIS, LSDSLAM, ORB-SLAM2, and SVO, all of which are built into the SLAMBench2 software. The algorithms' performance is evaluated using simulated datasets generated in the AftrBurner Engine. The datasets were designed to test the quality of each …


Maximizing Accuracy Through Stereo Vision Camera Positioning For Automated Aerial Refueling, Kirill A. Sarantsev Mar 2020

Maximizing Accuracy Through Stereo Vision Camera Positioning For Automated Aerial Refueling, Kirill A. Sarantsev

Theses and Dissertations

Aerial refueling is a key component of the U.S. Air Force strategic arsenal. When two aircraft interact in an aerial refueling operation, the accuracy of relative navigation estimates are critical for the safety, accuracy and success of the mission. Automated Aerial Refueling (AAR) looks to improve the refueling process by creating a more effective system and allowing for Unmanned Aerial Vehicle(s) (UAV) support. This paper considers a cooperative aerial refueling scenario where stereo cameras are used on the tanker to direct a \boom" (a large, long structure through which the fuel will ow) into a port on the receiver aircraft. …


Verifying And Improving A Flight Reference System's Performance, Loren E. Myers Mar 2020

Verifying And Improving A Flight Reference System's Performance, Loren E. Myers

Theses and Dissertations

The 746th Test Squadron (746 TS) at Holloman AFB, NM operates the Ultra High Accuracy Reference System (UHARS) as part of its mission positioning and navigation test. This research presents a method for verifying the performance of a flight reference system using a Delta-Position velocity derived from radio navigation positioning measurements. The algorithm presented may utilize Global Positioning System (GPS) or the Locata ground based positioning system. In the latter case, Locata provides a velocity truth independent from GPS. The accuracy of Locata and GPS are assessed and UHARS velocity measurements are characterized both in nominal and GPS denied applications.


An Analytic Study Of Pursuit Strategies, Mark E. Vlassakis Mar 2020

An Analytic Study Of Pursuit Strategies, Mark E. Vlassakis

Theses and Dissertations

The Two-on-One pursuit-evasion differential game is revisited where the holonomic players have equal speed, and the two pursuers are endowed with a circular capture range ℓ > 0. Then, the case where the pursuers' capture ranges are unequal, ℓ1 > ℓ2 ≥ 0, is analyzed. In both cases, the state space region where capture is guaranteed is delineated and the optimal feedback strategies are synthesized. Next, pure pursuit is considered whereupon the terminal separation between a pursuer and an equal-speed evader less than the pursuer's capture range ℓ > 0. The case with two pursuers employing pure pursuit is considered, and …


Heuristic Approaches For Near-Optimal Placement Of Gps-Based Multi-Static Radar Receivers In American Coastal Waters, Brandon J. Hufstetler Mar 2020

Heuristic Approaches For Near-Optimal Placement Of Gps-Based Multi-Static Radar Receivers In American Coastal Waters, Brandon J. Hufstetler

Theses and Dissertations

Narcotics smuggling across the Caribbean Sea is a growing concern for the United States Coast Guard. One vector for this illicit trafficking is via small aircraft. This thesis proposes a multi-static radar architecture using the Global Positioning System (GPS) constellation as a transmission source to detect these aircraft as they transit a detection fence. The system developed in this thesis relies on the forward-scatter phenomenon in which a radar shadow is cast by a target as it crosses in front of a transmitter, creating a measurable difference in the signal amplitude at the receiver. This thesis first develops a mathematical …


Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson Mar 2020

Improved Ground-Based Monocular Visual Odometry Estimation Using Inertially-Aided Convolutional Neural Networks, Josiah D. Watson

Theses and Dissertations

While Convolutional Neural Networks (CNNs) can estimate frame-to-frame (F2F) motion even with monocular images, additional inputs can improve Visual Odometry (VO) predictions. In this thesis, a FlowNetS-based [1] CNN architecture estimates VO using sequential images from the KITTI Odometry dataset [2]. For each of three output types (full six degrees of freedom (6-DoF), Cartesian translation, and transitional scale), a baseline network with only image pair input is compared with a nearly identical architecture that is also given an additional rotation estimate such as from an Inertial Navigation System (INS). The inertially-aided networks show an order of magnitude improvement over the …


Wireless Sensor Network Optimization For Radio Tomographic Imaging, Grant T. Nafziger Mar 2020

Wireless Sensor Network Optimization For Radio Tomographic Imaging, Grant T. Nafziger

Theses and Dissertations

Radio tomographic imaging (RTI) is a form of device-free, passive localization (DFPL) that uses a wireless sensor network (WSN) typically made up of affordable, low-power transceivers. The intent for RTI is to have the ability to monitor a given area, localizing and tracking obstructions within. The specific advantages rendered by RTI include the ability to provide imaging, localization, and tracking where other well developed methods like optical surveillance fall short. RTI can function through optical obstructions such as smoke and even physical obstructions like walls. This provides a tool that is particularly valuable for tactical operations like emergency response and …


Use Of Lidar In Automated Aerial Refueling To Improve Stereo Vision Systems, Michael R. Crowl Mar 2020

Use Of Lidar In Automated Aerial Refueling To Improve Stereo Vision Systems, Michael R. Crowl

Theses and Dissertations

The United States Air Force (USAF) executes five Core Missions, four of which depend on increased aircraft range. To better achieve global strike and reconnaissance, unmanned aerial vehicles (UAVs) require aerial refueling for extended missions. However, current aerial refueling capabilities are limited to manned aircraft due to technical difficulties to refuel UAVs mid-flight. The latency between a UAV operator and the UAV is too large to adequately respond for such an operation. To overcome this limitation, the USAF wants to create a capability to guide the refueling boom into the refueling receptacle. This research explores the use of light detection …


Magnetic Field Aided Indoor Navigation, William F. Storms Feb 2019

Magnetic Field Aided Indoor Navigation, William F. Storms

Theses and Dissertations

This research effort examines inertial navigation system aiding using magnetic field intensity data and a Kalman filter in an indoor environment. Many current aiding methods do not work well in an indoor environment, like aiding using the Global Positioning System. The method presented in this research uses magnetic field intensity data from a three-axis magnetometer in order to estimate position using a maximum – likelihood approach. The position measurements are then combined with a motion model using a Kalman filter. The magnetic field navigation algorithm is tested using a combination of simulated and real measurements. These tests are conducted using …


Sound Based Positioning, David L. Weathers Mar 2017

Sound Based Positioning, David L. Weathers

Theses and Dissertations

With a growing interest in non-GPS positioning, navigation, and timing (PNT), sound based positioning provides a precise way to locate both sound sources and microphones through audible signals of opportunity (SoOPs). Exploiting SoOPs allows for passive location estimation. But, attributing each signal to a specific source location when signals are simultaneously emitting proves problematic. Using an array of microphones, unique SoOPs are identified and located through steered response beamforming. Sound source signals are then isolated through time-frequency masking to provide clear reference stations by which to estimate the location of a separate microphone through time difference of arrival measurements. Results …


Physical Layer Defenses Against Primary User Emulation Attacks, Joan A. Betances Sep 2016

Physical Layer Defenses Against Primary User Emulation Attacks, Joan A. Betances

Theses and Dissertations

Cognitive Radio (CR) is a promising technology that works by detecting unused parts of the spectrum and automatically reconfiguring the communication system's parameters in order to operate in the available communication channels while minimizing interference. CR enables efficient use of the Radio Frequency (RF) spectrum by generating waveforms that can coexist with existing users in licensed spectrum bands. Spectrum sensing is one of the most important components of CR systems because it provides awareness of its operating environment, as well as detecting the presence of primary (licensed) users of the spectrum.


Absolute Positioning Using The Earth's Magnetic Anomaly Field, Aaron J. Canciani Sep 2016

Absolute Positioning Using The Earth's Magnetic Anomaly Field, Aaron J. Canciani

Theses and Dissertations

Achieving worldwide alternatives to GPS is a challenging engineering problem. Current GPS alternatives often suffer from limitations such as where and when the systems can operate. Navigation using the Earth's magnetic anomaly field, which is globally available at all times, shows promise to overcome many of these limitations. We present a navigation filter which uses the Earth's magnetic anomaly field as a navigation signal to aid an inertial navigation system (INS) in an aircraft. The filter utilizes highly-accurate optically pumped cesium (OPC) magnetometers to make scalar measurements of the Earth's magnetic field and compare them to a map using a …


Utilization Of A Geodesic Sphere And Quadcopter As Two-Way Field Probe For Electro-Magnetic Field Measurements In An Indoor Radar Cross Section Range, Nathan Lett Mar 2016

Utilization Of A Geodesic Sphere And Quadcopter As Two-Way Field Probe For Electro-Magnetic Field Measurements In An Indoor Radar Cross Section Range, Nathan Lett

Theses and Dissertations

Radar Cross Section (RCS) measurements rely heavily on multiple assumptions. Uncertainty in the final measurement is determined based on these assumptions. One source in particular is the non-homogeneous nature of the transmission path between radar test equipment and a target under test. The following research extends prior research. This thesis intends to provide a unique two-way field probe solution for measuring Electro-magnetic (EM) fluctuations in a test volume. In this thesis, the design, development, and demonstration of a geodesic sphere encased quadcopter two-way probe is explained. The Parrot® Bebop Drone quadcopter was used with a 2v frequency divided geodesic sphere …


Interference Suppression Using Knowledge-Aided Subarray Pattern Synthesis, David A. New Mar 2016

Interference Suppression Using Knowledge-Aided Subarray Pattern Synthesis, David A. New

Theses and Dissertations

Most phased array systems subarray many antenna elements into far fewer digitized channels. While having more degrees of freedom (DOF) yields better performance, adding channels to create more digital DOF increases system cost and data throughput requirements. A subarray itself constitutes a phased array with as many DOF as it has antenna element weights. Typically, only one degree of freedom is used to steer the maximum gain direction of the subarray pattern. For typical antenna geometries a single subarray will provide many more spatial DOF than there are digitized channels. The inherent DOF of the subarrays could be used to …


Multihop Rendezvous Algorithm For Frequency Hopping Cognitive Radio Networks, John A. Pavlik Mar 2016

Multihop Rendezvous Algorithm For Frequency Hopping Cognitive Radio Networks, John A. Pavlik

Theses and Dissertations

Cognitive radios allow the possibility of increasing utilization of the wireless spectrum, but because of their dynamic access nature require new techniques for establishing and joining networks, these are known as rendezvous. Existing rendezvous algorithms assume that rendezvous can be completed in a single round or hop of time. However, cognitive radio networks utilizing frequency hopping that is too fast for synchronization packets to be exchanged in a single hop require a rendezvous algorithm that supports multiple hop rendezvous. We propose the Multiple Hop (MH) rendezvous algorithm based on a pre-shared sequence of random numbers, bounded timing differences, and similar …


Integrity Determination For Image Rendering Vision Navigation, Sean M. Calhoun Mar 2016

Integrity Determination For Image Rendering Vision Navigation, Sean M. Calhoun

Theses and Dissertations

This research addresses the lack of quantitative integrity approaches for vision navigation, relying on the use of image or image rendering techniques. The ability to provide quantifiable integrity is a critical aspect for utilization of vision systems as a viable means of precision navigation. This research describes the development of two unique approaches for determining uncertainty and integrity for a vision based, precision, relative navigation system, and is based on the concept of using a single camera vision system, such as an electro-optical (EO) or infrared imaging (IR) sensor, to monitor for unacceptably large and potentially unsafe relative navigation errors. …


Characterization Of Quad-Copter Positioning Systems And The Effect Of Pose Uncertainties On Field Probe Measurements, James C. Dossett Mar 2016

Characterization Of Quad-Copter Positioning Systems And The Effect Of Pose Uncertainties On Field Probe Measurements, James C. Dossett

Theses and Dissertations

When measuring the Radar Cross Section (RCS) of a test object, many uncertainties must be accounted for, such as the non-homogeneous nature of the medium between the radar test equipment and the platform under test. There are a variety of other error sources, including clutter and Radio Frequency Interference (RFI), motivating the development of techniques to measure and model the uncertainties in RCS measurements. The following research, in unison with prior and current efforts, intends to reduce the impact of these uncertainties by utilizing a unique two-way field probe in the form of a geodesic sphere encompassing a commercial quad-copter …


Comparison Of Methods For Radio Position Of Non-Emitting Dismounts, Collin J. Seanor Mar 2016

Comparison Of Methods For Radio Position Of Non-Emitting Dismounts, Collin J. Seanor

Theses and Dissertations

Radio Tomographic Imaging (RTI) is a form of Device Free Passive Localization (DFPL) that utilizes the Received Signal Strength (RSS) values from a collection of wireless transceivers to produce an image in order to localize a subject within a Wireless Sensor Network (WSN). Radio Mapping is another form of DFPL that can utilize the same RSS values from a WSN to localize a subject by comparing recent values to a set of calibration data. RTI and Radio Mapping have never been directly compared to one another as a means of localization within a WSN. The goal of this research is …


An Openeaagles Framework Extension For Hardware-In-The-Loop Swarm Simulation, Derek B. Worth Mar 2016

An Openeaagles Framework Extension For Hardware-In-The-Loop Swarm Simulation, Derek B. Worth

Theses and Dissertations

Unmanned Aerial Vehicle (UAV) swarm applications, algorithms, and control strategies have experienced steady growth and development over the past 15 years. Yet, to this day, most swarm development efforts have gone untested and thus unimplemented. Cost of aircraft systems, government imposed airspace restrictions, and the lack of adequate modeling and simulation tools are some of the major inhibitors to successful swarm implementation. This thesis examines how the OpenEaagles simulation framework can be extended to bridge this gap. This research aims to utilize Hardware-in-the-Loop (HIL) simulation to provide developers a functional capability to develop and test the behaviors of scalable and …


Initial Implementation And Testing Of A Tightly-Coupled Imu/Pseudolite System, James E. C. Kawecki Mar 2015

Initial Implementation And Testing Of A Tightly-Coupled Imu/Pseudolite System, James E. C. Kawecki

Theses and Dissertations

Currently, the 746th Test Squadrons (746th TS) Central Inertial and GPS Test Facility (CIGTF) operates one of the most accurate truth reference systems, called the CIGTF Reference System (CRS). CIGTF will be replacing the CRS with a new references system called UHARS (Ultra High Accuracy Reference System). UHARS will differ from CRS by adding the ability to use a non-GPS pseudolite system, as a new measurement source. This research effort describes the design of the extended Kalman filter which is developed in AFIT's SPIDER filter framework which implements a tightly-coupled pseudolite/INS filter.


Characterizing Multiple Wireless Sensor Networks For Large-Scale Radio Tomography, Tan Van Mar 2015

Characterizing Multiple Wireless Sensor Networks For Large-Scale Radio Tomography, Tan Van

Theses and Dissertations

Radio Tomographic Imaging (RTI) is an emerging Device-Free Passive Localization (DFPL) technology that uses a collection of cheap wireless transceivers to form a Wireless Sensor Network (WSN). Unlike device-based active localization, DFPL does not require a target of interest to be wearing any kind of device. The basic concept of RTI utilizes the changes in Received Signal Strength (RSS) between the links of each transceiver to create an attenuation image of the area. This image can then be used for target detection, tracking, and localization. Each transceiver in the WSN must transmit sequentially to prevent collisions. This is not a …


Urban Environment Navigation With Real-Time Data Utilizing Computer Vision, Inertial, And Gps Sensors, Johnathan L. Rohde Mar 2015

Urban Environment Navigation With Real-Time Data Utilizing Computer Vision, Inertial, And Gps Sensors, Johnathan L. Rohde

Theses and Dissertations

The purpose of this research was to obtain a navigation solution that used real data, in a degraded or denied global positioning system (GPS) environment, from low cost commercial o the shelf sensors. The sensors that were integrated together were a commercial inertial measurement unit (IMU), monocular camera computer vision algorithm, and GPS. Furthermore, the monocular camera computer vision algorithm had to be robust enough to handle any camera orientation that was presented to it. This research develops a visual odometry 2-D zero velocity measurement that is derived by both the features points that are extracted from a monocular camera …


Estimating Single And Multiple Target Locations Using K-Means Clustering With Radio Tomographic Imaging In Wireless Sensor Networks, Jeffrey K. Nishida Mar 2015

Estimating Single And Multiple Target Locations Using K-Means Clustering With Radio Tomographic Imaging In Wireless Sensor Networks, Jeffrey K. Nishida

Theses and Dissertations

Geolocation involves using data from a sensor network to assess and estimate the location of a moving or stationary target. Received Signal Strength (RSS), Angle of Arrival (AoA), and/or Time Difference of Arrival (TDoA) measurements can be used to estimate target location in sensor networks. Radio Tomographic Imaging (RTI) is an emerging Device-Free Localization (DFL) concept that utilizes the RSS values of a Wireless Sensor Network (WSN) to geolocate stationary or moving target(s). The WSN is set up around the Area of Interest (AoI) and the target of interest, which can be a person or object. The target inside the …


Unique Two-Way Field Probe Concept Utilizing A Geodesic Sphere And Quad-Rotor, Travis A. Albee Mar 2015

Unique Two-Way Field Probe Concept Utilizing A Geodesic Sphere And Quad-Rotor, Travis A. Albee

Theses and Dissertations

Surveying the test volume of a radar range normally involves utilizing an antenna field probe to measure the electromagnetic field in that volume of space. Today, field probes vary in size and shape and can be difficult and time consuming to setup. They also have a limited range of motion due to their support structure and translational mechanism, which also has scattering mechanisms that can perturb the field they are measuring. Field probes are useful, but because of these shortcomings they can provide limited characterization of the field illuminating the measurement area. Leveraging quad-rotor technology, coupled with a two-way probe …


A Novel Analysis Of Performance Classification And Workload Prediction Using Electroencephalography (Eeg) Frequency Data, Donovan L. Ricks Mar 2015

A Novel Analysis Of Performance Classification And Workload Prediction Using Electroencephalography (Eeg) Frequency Data, Donovan L. Ricks

Theses and Dissertations

Across the DOD each task an operator is presented with has some level of difficulty associated with it. This level of difficulty over the course of the task is also known as workload, where the operator is faced with varying levels of workload as he or she attempts to complete the task. The focus of the research presented in this thesis is to determine if those changes in workload can be predicted and to determine if individuals can be classified based on performance in order to prevent an increase in workload that would cause a decline in performance in a …


Single Platform Geolocation Of Radio Frequency Emitters, Eric J. Bailey Mar 2015

Single Platform Geolocation Of Radio Frequency Emitters, Eric J. Bailey

Theses and Dissertations

The focus of this research is on single platform geolocation methods where the position of a single stationary radio frequency emitter is estimated from multiple simulated angle and frequency of arrival measurements taken from a single moving receiver platform. The analysis scenario considered consists of a single 6U CubeSat in low earth orbit receiving radio frequency signals from a stationary emitter located on the surface of the Earth. A multiple element receive antenna array and the multiple signal classification algorithm are used to estimate the angles of arrival of an impinging signal. The maximum likelihood estimator is used to estimate …


Computational Electromagnetic Studies For Low-Frequency Compensation Of The Reflector Impulse-Radiating Antenna, Casey E. Fillmore Mar 2015

Computational Electromagnetic Studies For Low-Frequency Compensation Of The Reflector Impulse-Radiating Antenna, Casey E. Fillmore

Theses and Dissertations

The reflector impulse-radiating antenna (IRA) is considered to meet the requirement for a wideband, directional antenna with short temporal response and small electrical footprint. Standard reflector IRA designs are modeled and performance is simulated using full-wave computational electromagnetic (CEM) software. Characterization of the standard designs reveals the possible existence of wide, frequency-independent backlobes containing nearly 40% of the radiated power at high frequencies. These undesirable backlobes have never been hypothesized, predicted or measured, likely due in part to their alignment outside the primary measurement planes. At the lowest operating frequencies, the reflector IRA is unaffected by backlobes, but is characterized …