Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Modeling And Simulation Of High-Field, High-Temperature Sic Devices, Sanjay Pathak Oct 1998

Modeling And Simulation Of High-Field, High-Temperature Sic Devices, Sanjay Pathak

Electrical & Computer Engineering Theses & Dissertations

With superior properties such as a large band gap, high thermal conductivity, and large electron drift velocity, SiC is expected to give a new dimension to high power, high temperature electronic devices used in power applications, microwave circuits, and for the space and automobile industries. SiC possesses an inherent advantage over its other large bandgap competitors in terms of inherited processing and device technology from Si. However, there is inadequate understanding of SiC device and its parameters. Simple extrapolations from Si are known to be inadequate. The aim of this dissertation, therefore. is to produce better understanding of SiC devices …


Effect Of Pulsed Electric Fields On Aquatic Nuisance Species, Amr Abou-Ghazala Jul 1998

Effect Of Pulsed Electric Fields On Aquatic Nuisance Species, Amr Abou-Ghazala

Electrical & Computer Engineering Theses & Dissertations

Clinical and theoretical evidence indicate that electric fields have biological effects ranging from recoverable disturbance to mortality induction depending on the field parameters and time of exposure. In this thesis, the effect of electrical field in pulsed form on aquatic nuisance species is investigated. Pulse parameters in terms of amplitude, width, shape, and repetition rate that stimulate the species to desirable levels are to be defined. Applying the electrical pulses with appropriate parameters to stun aquatic nuisance species entering marine cooling systems will prevent it from attaching to pipe walls. The use of electrical fields to seek efficient, environmentally friendly, …


Microhollow Cathode Discharge Excimer Lamps, Ahmed El-Habachi Jul 1998

Microhollow Cathode Discharge Excimer Lamps, Ahmed El-Habachi

Electrical & Computer Engineering Theses & Dissertations

Microhollow cathode discharges are non-thermal discharges of such small sizes that thermalization of the electrons is prevented. By reducing the diameter of the cathode opening in these discharge geometries to values on the order of 100 $\mu$m we were able to operate discharges in argon and xenon in a direct current mode up to atmospheric pressure. The large concentration of high electrons, in combination with high pressures favors three body processes such as excimer formation. This was confirmed by experiments in xenon and argon where emission of excimer radiation at 172 nm and 130 nm, respectively, was observed when the …


The Cluster Multipole Algorithm For Far-Field Computations, Rakesh R. Patel Jul 1998

The Cluster Multipole Algorithm For Far-Field Computations, Rakesh R. Patel

Electrical & Computer Engineering Theses & Dissertations

Computer simulations of N-body systems are beneficial to study the overall behavior of a number of physical systems in fields such as astrophysics, molecular dynamics, and computational fluid dynamics. A new approach for computer simulations of N-body systems is proposed in this research. The new algorithm is called the Cluster Multipole Algorithm (CMA). The goals of the new algorithm are to improve the applicability to non-point sources and to provide more control on the accuracy over current algorithms. The algorithm is targeted to applications that do not require rebuilding the data structure about the system every time step due to …


Thermal Lattice Boltzmann Simulations Of Variable Prandtl Number Turbulent Flows, Min Soe, George Vahala, Pavol Pavlo, Linda L. Vahala, Hudong Chen Apr 1998

Thermal Lattice Boltzmann Simulations Of Variable Prandtl Number Turbulent Flows, Min Soe, George Vahala, Pavol Pavlo, Linda L. Vahala, Hudong Chen

Electrical & Computer Engineering Faculty Publications

Thermal lattice Boltzmann (TLBE) models that utilize the single relaxation time scalar Bhatnagar, Gross, and Krook collision operator have an invariant Prandtl number. For flows with arbitrary Prandtl number, a matrix collision operator is introduced. The relaxation parameters are generalized so that the transport coefficients become density independent. TLBE simulations are presented for two-dimensional free decaying turbulence induced by a strongly perturbed double velocity shear layer for various Prandtl numbers.


Field Emission And Breakdown Processes In Vacuum Gaps With Sio(X)-Coated Cathodes, Raymond Jack Allen Iii Apr 1998

Field Emission And Breakdown Processes In Vacuum Gaps With Sio(X)-Coated Cathodes, Raymond Jack Allen Iii

Electrical & Computer Engineering Theses & Dissertations

Field emission of electrons is the major cause of electrical breakdown in high voltage systems in vacuum. The highest hold-off electric field of the carefully polished and cleaned stainless steel cathodes was increased to 70MV/m. Thin silicon monoxide, SiOx, cathode coatings reduced field emission and increased the hold-off field further. Coating the stainless steel cathodes with 2μ SiOx reduced the field emission current by at least two orders of magnitude at field of 50MV/m and increased the breakdown field to 140MV/m, doubling the breakdown voltage.

The increase in hold-off voltage with SiOx coatings is discussed in …


Generation Of Intense Excimer Radiation From High-Pressure Hollow Cathode Discharges, Ahmed El-Habachi, Karl H. Schoenbach Jan 1998

Generation Of Intense Excimer Radiation From High-Pressure Hollow Cathode Discharges, Ahmed El-Habachi, Karl H. Schoenbach

Bioelectrics Publications

By reducing the diameter of the cathode opening in a hollow cathode discharge geometry to values on the order of 100 μm, we were able to operate these discharges in noble gases in a direct current mode up to atmospheric pressure. High-pressure discharges in xenon were found to be strong sources of excimer radiation. Highest intensities at a wavelength of 172 nm were obtained at a pressure of 400 Torr. At this pressure, the vacuum ultraviolet (VUV) radiant power of a single discharge operating at a forward voltage of 220 V and currents exceeding 2 mA reaches values between 6% …


Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach Jan 1998

Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach

Bioelectrics Publications

A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V …


Femtosecond Photoemission Study Of Ultrafast Electron Dynamics In Single-Crystal Au(111) Films, J. Cao, Y. Gao, H. E. Elsayed-Ali, R. J. D. Miller, D. A. Mantell Jan 1998

Femtosecond Photoemission Study Of Ultrafast Electron Dynamics In Single-Crystal Au(111) Films, J. Cao, Y. Gao, H. E. Elsayed-Ali, R. J. D. Miller, D. A. Mantell

Electrical & Computer Engineering Faculty Publications

The energy-dependent relaxation of photoexcited electrons has been measured by time-resolved two-photon photoemission spectroscopy on single-crystal Au(111) films with thickness ranging from 150 to 3000 Å. It is found that the energy-dependent relaxation does not show any significant thickness dependence, which indicates that electron transport is a much slower dynamical process in the near-surface region than expected from bulk properties. Furthermore, lifetimes of the photoexcited electrons can be fitted well by the Fermi-liquid theory with a scaling factor plus an effective upper lifetime. This observation enables separation of electron-electron scattering, and to a lesser extent electron-phonon scattering, processes from electron-transport …


Temperature Dependence Of Step Density On Vicinal Pb(111), Z. H. Zhang, H. E. Elsayed-Ali Jan 1998

Temperature Dependence Of Step Density On Vicinal Pb(111), Z. H. Zhang, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The temperature dependence of step density on the vicinal Pb(111) surface is investigated using reflection high-energy electron diffraction. When the temperature is increased from 323 to 590 K. the average terrace width and the average string length at the step edge decrease from 85±25 to 37±16 Å and from 220±33 to 25±8 Å, respectively. Thermal step collapse on the Pb(111) surface near its bulk melting temperature is not observed. Above 530±7 K, the change in the string length at the step edge with temperature becomes small, and the intensity of the (00) beam is significantly decreased. We conclude that partial …


Surface Morphology Of Laser-Superheated Pb(111) And Pb(100), Z. H. Zhang, Bo Lin, X. L. Zeng, H. E. Elsayed-Ali Jan 1998

Surface Morphology Of Laser-Superheated Pb(111) And Pb(100), Z. H. Zhang, Bo Lin, X. L. Zeng, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The surface step density on the vicinal Pb(111) and the surface vacancy density on Pb(100) after laser superheating and melting are investigated using reflection high-energy electron diffraction. With ∼100-ps laser pulses, Pb(111) surface superheating does not significantly change the density of the steps and step-edge roughness. However, after laser surface melting, the average terrace width and the string length at the step edge become as large as those at room temperature. The average terrace width at 573 K changes from 38±15 to 64±19 Å after laser surface melting, while the average string length at the step edge changes from 90±14 …


Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali Jan 1998

Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Atomic hydrogen cleaning is used to clean InP(100) negative electron affinity photocathodes. Reflection high-energy electron diffraction patterns of reconstructed, phosphorus-stabilized, InP(100) surfaces are obtained after cleaning at ∼400 °C. These surfaces produce high quantum efficiency photocathodes (∼8.5%), in response to 632.8 nm light. Without atomic hydrogen cleaning, activation of InP to negative electron affinity requires heating to ∼530 °C. At this high temperature, phosphorus evaporates preferentially and a rough surface is obtained. These surfaces produce low quantum efficiency photocathodes (∼0.1%). The use of reflection high-energy electron diffraction to measure the thickness of the deposited cesium layer during activation by correlating …


Modeling Electromagnetic Disturbances In Closed-Loop Computer Controlled Flight Systems, W. Steven Gray, Oscar R. Gonzalez Jan 1998

Modeling Electromagnetic Disturbances In Closed-Loop Computer Controlled Flight Systems, W. Steven Gray, Oscar R. Gonzalez

Electrical & Computer Engineering Faculty Publications

High intensity electromagnetic radiation has been demonstrated to be a source of computer upsets in commercially available digital flight control systems. In this paper we introduce an electromagnetic disturbance model which can be used for stability analysis and augmentation of any such digitally implemented control law. The model is composed of a Markovian exosystem supplying radiation events to a discrete-time jump linear system which models how the radiation interferes with the nominal operation of the closed-loop system. We discuss how this model can be used to characterize stability and how it can be parametrized and validated in an experimental setting.


Thermodynamic Modeling And Analysis Of Human Stress Responses, Satish C. Boregowda Jan 1998

Thermodynamic Modeling And Analysis Of Human Stress Responses, Satish C. Boregowda

Mechanical & Aerospace Engineering Theses & Dissertations

A novel approach based on the second law of thermodynamics is developed to investigate the psychophysiology and quantify human stress level. Two types of stresses (thermal and mental) are examined. A Unified Stress Response Theory (USRT) is developed under the new proposed field of study called Engineering Psychophysiology. The USRT is used to investigate both thermal and mental stresses from a holistic (human body as a whole) and thermodynamic viewpoint. The original concepts and definitions are established as postulates which form the basis for thermodynamic approach to quantify human stress level. An Objective Thermal Stress Index (OTSI) is developed by …