Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering

2019

Institution
Keyword
Publication
Publication Type
File Type

Articles 61 - 75 of 75

Full-Text Articles in Engineering

Compression Set Improvement Of Thermoplastic Vulcanizates For High Temperature Tubing, Mitchell Valaitis Jan 2019

Compression Set Improvement Of Thermoplastic Vulcanizates For High Temperature Tubing, Mitchell Valaitis

Williams Honors College, Honors Research Projects

It was hypothesized that increasing the curative level of the fluorocarbon rubber (FKM) used in manufacturing of thermoplastic vulcanizate (TPV) materials would decrease the compression set values of the TPV enough for it to be suitable as a flexible, lightweight alternative to high operating temperature thermoset rubber tubing currently being used for power steering hose. First, promising TPV formulations were identified by varying the polyamide (PA) and FKM used in a Brabender mixer. Four different types of polyamide and four different types of FKM were investigated, with two of the FKM types and one polyamide type identified as being promising. …


Comparative Kinetic Modeling Of Growth And Molecular Hydrogen Overproduction By Engineered Strains Of Thermotoga Maritima, Raghuveer Singh, Rahul Tevatia, Derrick White, Yaşar Demirel, Paul H. Blum Jan 2019

Comparative Kinetic Modeling Of Growth And Molecular Hydrogen Overproduction By Engineered Strains Of Thermotoga Maritima, Raghuveer Singh, Rahul Tevatia, Derrick White, Yaşar Demirel, Paul H. Blum

Department of Chemical and Biomolecular Engineering: Faculty Publications

Thermotoga maritima is an anaerobic hyperthermophilic bacterium known for its high amounts of hydrogen (H2) production. In the current study, the kinetic modeling was applied on the engineered strains of T. maritima that surpassed the natural H2 production limit. The study generated a kinetic model explaining H2 overproduction and predicted a continuous fermentation system. A Leudking-Piret equation-based model predicted that H2 production by Tma200 (0.217 mol-H2 g–1-biomass) and Tma100 (0.147 mol-H2 g–1-biomass) were higher than wild type (0.096 mol-H2 g–1 -biomass) with reduced rates of maltose utilization. …


Functionalization Of Iron Oxide Nanoparticles And The Impact On Surface Reactive Oxygen Species Generation For Potential Biomedical And Environmental Applications, Trang Mai Jan 2019

Functionalization Of Iron Oxide Nanoparticles And The Impact On Surface Reactive Oxygen Species Generation For Potential Biomedical And Environmental Applications, Trang Mai

Theses and Dissertations--Chemical and Materials Engineering

Iron oxide nanoparticles (IONPs) have been widely studied for a variety of applications, from biomedical applications (e.g., cell separation, drug delivery, contrast agent for magnetic resonance imaging and magnetically mediated energy delivery for cancer treatment) to environmental remediations (e.g., heavy metal removal and organic pollutants degradation). It has been demonstrated that IONPs can induce the production of reactive oxygen species (ROS) via Fenton/Haber-Weiss reactions which has been shown to be one of the key underlying mechanisms of nanoparticles toxicity. This inherent toxicity of nanoparticles has been shown to enhance the efficacy of traditional cancer therapies such as chemotherapy and radiation. …


Impact Of Conformational Change, Solvation Environment, And Post-Translational Modification On Desulfurization Enzyme 2'-Hydroxybiphenyl-2-Sulfinate Desulfinase (Dszb) Stability And Activity, Landon C. Mills Jan 2019

Impact Of Conformational Change, Solvation Environment, And Post-Translational Modification On Desulfurization Enzyme 2'-Hydroxybiphenyl-2-Sulfinate Desulfinase (Dszb) Stability And Activity, Landon C. Mills

Theses and Dissertations--Chemical and Materials Engineering

Naturally occurring enzymatic pathways enable highly specific, rapid thiophenic sulfur cleavage occurring at ambient temperature and pressure, which may be harnessed for the desulfurization of petroleum-based fuel. One pathway found in bacteria is a four-step catabolic pathway (the 4S pathway) converting dibenzothiophene (DBT), a common crude oil contaminant, into 2-hydroxybiphenyl (HBP) without disrupting the carbon-carbon bonds. 2’-Hydroxybiphenyl-2-sulfinate desulfinase (DszB), the rate-limiting enzyme in the enzyme cascade, is capable of selectively cleaving carbon-sulfur bonds. Accordingly, understanding the molecular mechanisms of DszB activity may enable development of the cascade as industrial biotechnology. Based on crystallographic evidence, we hypothesized that DszB …


Engineering Of Earth-Abundant Electrochemical Catalysts, Dylan D. Rodene Jan 2019

Engineering Of Earth-Abundant Electrochemical Catalysts, Dylan D. Rodene

Theses and Dissertations

Alternative energy research into hydrogen production via water electrolysis addresses environmental and sustainability concerns associated with fossil fuel use. Renewable-powered electrolyzers are foreseen to produce hydrogen if energy and cost requirements are achieved. Electrocatalysts reduce the energy requirements of operating electrolyzers by lowering the reaction kinetics at the electrodes. Platinum group metals (PGMs) tend to be utilized as electrocatalysts but are not readily available and are expensive. Ni1-xMox alloys, as low-cost and earth-abundant transition metal nanoparticles (NPs), are emerging as promising electrocatalyst candidates to replace expensive PGM catalysts in alkaline media. Pure-phase cubic and hexagonal Ni1-x …


Reduction Of Nox Emissions In A Single Cylinder Diesel Engine Using Sncr With In-Cylinder Injection Of Aqueous Urea, Anthony Timpanaro Jan 2019

Reduction Of Nox Emissions In A Single Cylinder Diesel Engine Using Sncr With In-Cylinder Injection Of Aqueous Urea, Anthony Timpanaro

UNF Graduate Theses and Dissertations

The subject of this study is the effect of in-cylinder selective non-catalytic reduction (SNCR) of NOx emissions in diesel exhaust gas by means of direct injection of aqueous urea ((NH2)2CO) into the combustion chamber. A single cylinder diesel test engine was modified to accept an electronically controlled secondary common rail injection system to deliver the aqueous urea directly into the cylinder during engine operation.

Direct in-cylinder injection was chosen in order to ensure precise delivery of the reducing agent without the risk of any premature reactions taking place. Unlike direct in-cylinder injection of neat water, …


Towards Sustainable Production Of Chemicals And Fuels From The Fast Pyrolysis Of Waste Polyolefin Plastics, Ulises Gracida Alvarez Jan 2019

Towards Sustainable Production Of Chemicals And Fuels From The Fast Pyrolysis Of Waste Polyolefin Plastics, Ulises Gracida Alvarez

Dissertations, Master's Theses and Master's Reports

The increasing amount of plastic waste (PW) generation has become an important concern due to the leveled-off recycling rates. Therefore, governmental agencies around the world, including state governments in the United States, have proposed initiatives to minimize the amount of PW that is landfilled and encourage recycling or energy recovery. Circular economy is a strategy that attempts on reusing PW to produce new polymers while avoiding its disposal and the use of virgin material. Chemical recycling raises an interesting technology prospect due to the potential reduction of pollutant emissions and the establishment of a circular economy through the production of …


Intensification Of Gas Absorption In A Downward Flow Microbubble Bioreactor, Manizheh Ansari Jan 2019

Intensification Of Gas Absorption In A Downward Flow Microbubble Bioreactor, Manizheh Ansari

Dissertations and Theses

Bioreactors are of interest for value-upgrading of stranded or waste industrial gases, such as CO, CH4, or syngas. Process economics requires reduction of reactor cost and size while maintaining high production rate via rapid delivery of gas feedstock to the liquid phase which in turn requires a high volumetric mass transfer rate (). One strategy to achieve this goal is to increase interfacial area density, a, to >3000 m2 m-3, while minimizing use of energy. Here we show a novel reactor column design that uses a micro-jet array to break feedstock at ambient pressure …


Elucidation Of The Catalytic Partial Oxidation Of Methane Utilizing The One-Of-A-Kind Catalytic Shock Tube Technique, Robyn E. Smith Jan 2019

Elucidation Of The Catalytic Partial Oxidation Of Methane Utilizing The One-Of-A-Kind Catalytic Shock Tube Technique, Robyn E. Smith

Dissertations and Theses

The mechanism for the catalytic partial oxidation of methane has been debated in scientific literature for over 20 years. This is a seemingly simple reaction producing CO, CO2, H2 and H2O through either partial oxidation followed by complete oxidation or complete oxidation followed by reforming steps. What is happening when the reaction is allowed to occur in an environment absent of transport limitations, absent of temperature gradients and temperature changes, absent of boundary layers must be understood and, until now, has yet to be achieved in one experimental technique.

A novel method using a one …


Approximate Analytical Solution For Mathematical Models Of Thermal Ignition And Non-Isothermal Catalytic Zero Order Reaction In A Spherical Geometry, Moustafa A. Soliman Jan 2019

Approximate Analytical Solution For Mathematical Models Of Thermal Ignition And Non-Isothermal Catalytic Zero Order Reaction In A Spherical Geometry, Moustafa A. Soliman

Chemical Engineering

In this paper an approximate analytical solution for the Frank-Kamenetskii equation modeling thermal ignition without the depletion of the combustibles in a spherical annulus and non-isothermal zero order reaction in spherical catalyst particle is presented. The approximate solution is compared with the numerical solution and is in good agreement with the numerical solution. The approximate solution obtained is valid for all values of the distance parameter. Multiple solutions occur for some range of Frank-Kamenetskii parameter (λ). The multiplicity is infinite for the case of a solid sphere and λ=2.Interesting relation is obtained for λ at the turning points. For the …


Chemically Dealloyed Fe-Based Metallic Glass With Void Channels-Like Architecture For Highly Enhanced Peroxymonosulfate Activation In Catalysis, J.C. Wang, S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, Y.J. Lui, J. Lu, L.C Zhang Jan 2019

Chemically Dealloyed Fe-Based Metallic Glass With Void Channels-Like Architecture For Highly Enhanced Peroxymonosulfate Activation In Catalysis, J.C. Wang, S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, Y.J. Lui, J. Lu, L.C Zhang

Research outputs 2014 to 2021

Metallic glasses (MGs) with their intrinsic disordered atomic structure and widely controllable atomic components have recently emerged as fascinating functional materials in wastewater treatment. Compared to crystalline alloys, the less-noble atomic components in monolithic metallic glass are more efficient to be selectively dissolved during dealloying process. This work reported a facile chemical dealloying approach to fabricate a void channels-like structured MG with the elemental components of Fe73.5Si13.5B9Cu1Nb3 for methylene blue (MB) degradation. Results indicated that the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs with the void channels-like morphology presented a significant improvement of catalytic efficiency and reusability. The dye degradation reaction rate (kobs) of …


Enhanced Electro-Oxidation Of Methanol At Pt-Au Nanocatalyst For Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Ahmad M. Mohammad Prof Jan 2019

Enhanced Electro-Oxidation Of Methanol At Pt-Au Nanocatalyst For Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Ahmad M. Mohammad Prof

Chemical Engineering

In this investigation, a Pt-Au nanocatalyst prepared by the coelectrodeposition of Pt (PtNPs) and Au (AuNPs) nanoparticles is assembled onto a glassy carbon (GC) electrode for efficient methanol oxidation (MO). Several molar ratios between PtNPs and AuNPs have been used and the corresponding catalytic activity towards MO is tracked. The Pt1:Au1 catalyst showed the highest catalytic activity (5 times higher oxidation peak current (Ip) and a 126 mV negative shift in the onset potential (Eonset) toward MO). The catalyst’s morphology, composition and activity are investigated and the ehancement mechanism is recognized.


A Simple And Effective Way To Overcome Carbon Monoxide Poisoning Of Platinum Surfaces In Direct Formic Acid Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Sohair A. Darwish Ms Jan 2019

A Simple And Effective Way To Overcome Carbon Monoxide Poisoning Of Platinum Surfaces In Direct Formic Acid Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Sohair A. Darwish Ms

Chemical Engineering

A glassy carbon (GC) electrode modified with multi-walled carbon nanotubes (MWCNTs) and platinum nanoparticles (PtNPs), Pt/MWCNTs-GC, has been introduced for formic acid electro-oxidation (FAO). A similar loading of PtNPs has been conserved for a proper comparison between the Pt/MWCNTs-GC and the unmodified Pt/GC electrodes. The modification with MWCNTs could enhance the loading of PtNPs onto the GC electrode in a way that minimizes its agglomeration and increases its dispersion in the CNTs network. This not only increases the surface area exposed to the reaction but also interrupts the contiguity of the Pt active sites minimizing the adsorption of the poisoning …


Mechanism Study Of Shale Gas Conversion Via Chemical Looping And Heterocatalytic Processes, Lei Bai Jan 2019

Mechanism Study Of Shale Gas Conversion Via Chemical Looping And Heterocatalytic Processes, Lei Bai

Graduate Theses, Dissertations, and Problem Reports

The shale gas revolution has significantly changed the energy landscape in US. The technical-feasible, energy-effective schemes for shale gas combustion and utilization, especially from remote resources, have attracted increasing interest due to expensive transportation/distribution cost. In this research, for the first time, chemical looping combustion (CLC) of methane with inherent CO2 capture, oxidative coupling of methane (OCM) and dehydro-aromatization (DHA) of ethane are systematically studied as promising alternatives at O2-rich, O2-lean and non-oxidative conditions, respectively.

Chemical looping combustion is bridging clean fuel combustion in energy production with inherent CO2 capture. CLC utilized an oxygen …


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.