Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Formulation Optimization Effects On Mechanical And Rheological Properties Of Filled Polysiloxanes, Kevin Mcnay Dec 2019

Formulation Optimization Effects On Mechanical And Rheological Properties Of Filled Polysiloxanes, Kevin Mcnay

Electronic Theses & Dissertations

Polysiloxanes are a class of high-performance polymeric materials that are used in a wide variety of applications, including O-rings, gaskets, sealants, coatings, and adhesives. These materials have high temperature resistances as well as flexibility at low temperatures. This is due to the bond between the oxygen and silicon atom, a bond that requires a high dissociation energy to break. However, their elastomers, which can be obtained by crosslinking linear precursors using various crosslinkers, generally exhibit low strength and have poor mechanical properties unless reinforced. Therefore, fillers, additives, UV-stabilizers, and anti-oxidants are often incorporated in order to improve the resulting properties. …


Effect Of Pt Promotion On The Ni-Catalyzed Deoxygenation Of Tristearin To Fuel-Like Hydrocarbons, Ryan Loe, Kelsey Huff, Morgan Walli, Tonya Morgan, Dali Qian, Robert Pace, Yang Song, Mark Isaacs, Eduardo Santillan-Jimenez, Mark Crocker Feb 2019

Effect Of Pt Promotion On The Ni-Catalyzed Deoxygenation Of Tristearin To Fuel-Like Hydrocarbons, Ryan Loe, Kelsey Huff, Morgan Walli, Tonya Morgan, Dali Qian, Robert Pace, Yang Song, Mark Isaacs, Eduardo Santillan-Jimenez, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

Pt represents an effective promoter of supported Ni catalysts in the transformation of tristearin to green diesel via decarbonylation/decarboxylation (deCOx), conversion increasing from 2% over 20% Ni/Al2O3 to 100% over 20% Ni-0.5% Pt/Al2O3 at 260 °C. Catalyst characterization reveals that the superior activity of Ni-Pt relative to Ni-only catalysts is not a result of Ni particle size effects or surface area differences, but rather stems from several other phenomena, including the improved reducibility of NiO when Pt is present. Indeed, the addition of a small amount of Pt to the supported Ni …


A Promising Modification Of Pt Surfaces With Cnts For Decreasing Poisoning Impact In Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Aya A. Khalifa Ms. Jan 2019

A Promising Modification Of Pt Surfaces With Cnts For Decreasing Poisoning Impact In Direct Methanol Fuel Cells, Islam M. Al-Akraa Dr., Yaser M. Asal Mr, Aya A. Khalifa Ms.

Chemical Engineering

Direct methanol fuel cells (DMFCs) are clean energy sources that have many applications due to the high energy density of methanol as a fuel. However, this type of fuel cells (FCs) has limitations that are preventing it from being commercialized. One such limitation is the adsorption of intermediates such as CO into the surface of the Platinum (Pt) catalyst during methanol oxidation (MO) which deactivates its active sites, where the reaction is taking place, and leads to poisoning of the electrode over the long term. In this study, multi-walled carbon nanotubes (MWCNTs) have been introduced to the Pt-modified glassy carbon …