Open Access. Powered by Scholars. Published by Universities.®

Quantitative Psychology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Quantitative Psychology

Constraining Computational Models Of Brightness Perception: What’S The Right Psychophysical Data?, Guillermo Aguilar, Joris Vincent, Marianne Maertens May 2022

Constraining Computational Models Of Brightness Perception: What’S The Right Psychophysical Data?, Guillermo Aguilar, Joris Vincent, Marianne Maertens

MODVIS Workshop

No abstract provided.


Parametrically Constrained Lightness Model Incorporating Edge Classification And Increment-Decrement Neural Response Asymmetries, Michael E. Rudd May 2016

Parametrically Constrained Lightness Model Incorporating Edge Classification And Increment-Decrement Neural Response Asymmetries, Michael E. Rudd

MODVIS Workshop

Lightness matching data from disk-annulus experiments has the form of a parabolic (2nd-order polynomial) function when matches are plotted against annulus luminance on log-log axes. Rudd (2010) has proposed a computational cortical model to account for this fact and has subsequently (Rudd, 2013, 2014, 2015) extended the model to explain data from other lightness paradigms, including staircase-Gelb and luminance gradient illusions (Galmonte, Soranzo, Rudd, & Agostini, 2015). Here, I re-analyze parametric lightness matching data from disk-annulus experiments by Rudd and Zemach (2007) and Rudd (2010) for the purpose of further testing the model and to try to constrain …


Binocular 3d Motion Perception As Bayesian Inference, Martin Lages, Suzanne Heron May 2015

Binocular 3d Motion Perception As Bayesian Inference, Martin Lages, Suzanne Heron

MODVIS Workshop

The human visual system encodes monocular motion and binocular disparity input before it is integrated into a single 3D percept. Here we propose a geometric-statistical model of human 3D motion perception that solves the aperture problem in 3D by assuming that (i) velocity constraints arise from inverse projection of local 2D velocity constraints in a binocular viewing geometry, (ii) noise from monocular motion and binocular disparity processing is independent, and (iii) slower motions are more likely to occur than faster ones. In two experiments we found that instantiation of this Bayesian model can explain perceived 3D line motion direction under …