Open Access. Powered by Scholars. Published by Universities.®

Statistical Methodology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Statistical Methodology

Differential Patterns Of Interaction And Gaussian Graphical Models, Masanao Yajima, Donatello Telesca, Yuan Ji, Peter Muller Apr 2012

Differential Patterns Of Interaction And Gaussian Graphical Models, Masanao Yajima, Donatello Telesca, Yuan Ji, Peter Muller

COBRA Preprint Series

We propose a methodological framework to assess heterogeneous patterns of association amongst components of a random vector expressed as a Gaussian directed acyclic graph. The proposed framework is likely to be useful when primary interest focuses on potential contrasts characterizing the association structure between known subgroups of a given sample. We provide inferential frameworks as well as an efficient computational algorithm to fit such a model and illustrate its validity through a simulation. We apply the model to Reverse Phase Protein Array data on Acute Myeloid Leukemia patients to show the contrast of association structure between refractory patients and relapsed …


Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris Jan 2012

Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris

Jeffrey S. Morris

In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational …


Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do Jan 2012

Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do

Jeffrey S. Morris

Motivation: Analyzing data from multi-platform genomics experiments combined with patients’ clinical outcomes helps us understand the complex biological processes that characterize a disease, as well as how these processes relate to the development of the disease. Current integration approaches that treat the data are limited in that they do not consider the fundamental biological relationships that exist among the data from platforms.

Statistical Model: We propose an integrative Bayesian analysis of genomics data (iBAG) framework for identifying important genes/biomarkers that are associated with clinical outcome. This framework uses a hierarchical modeling technique to combine the data obtained from multiple platforms …