Open Access. Powered by Scholars. Published by Universities.®

Probability Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Probability

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost Dec 2023

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Tardys Quantifiers: Extracting Temporal And Reversible Dynamical Symmetries, Nhat Vu Minh Nguyen, Arjendu K. Pattanayak, Andres Aragoneses May 2023

Tardys Quantifiers: Extracting Temporal And Reversible Dynamical Symmetries, Nhat Vu Minh Nguyen, Arjendu K. Pattanayak, Andres Aragoneses

2023 Symposium

One of the great challenges in complex and chaotic dynamics is to reveal the details of its underlying determinism. This can be manifest in the form of temporal correlations or structured patterns in the dynamics of a measurable variable. These temporal dynamical structures are sometimes a consequence of hidden global symmetries. Here we identify the temporal (approximate) symmetries of a semiconductor laser with external optical feedback, based on which we define the Temporal And Reversible DYnamical Symmetry (TARDYS) quantifiers to evaluate the relevance of specific temporal correlations in a time series. We show that these symmetries are also present in …


Dynamic Neuromechanical Sets For Locomotion, Aravind Sundararajan Dec 2020

Dynamic Neuromechanical Sets For Locomotion, Aravind Sundararajan

Doctoral Dissertations

Most biological systems employ multiple redundant actuators, which is a complicated problem of controls and analysis. Unless assumptions about how the brain and body work together, and assumptions about how the body prioritizes tasks are applied, it is not possible to find the actuator controls. The purpose of this research is to develop computational tools for the analysis of arbitrary musculoskeletal models that employ redundant actuators. Instead of relying primarily on optimization frameworks and numerical methods or task prioritization schemes used typically in biomechanics to find a singular solution for actuator controls, tools for feasible sets analysis are instead developed …


Probabilities Involving Standard Trirectangular Tetrahedral Dice Rolls, Rulon Olmstead, Doneliezer Baize Oct 2018

Probabilities Involving Standard Trirectangular Tetrahedral Dice Rolls, Rulon Olmstead, Doneliezer Baize

Rose-Hulman Undergraduate Mathematics Journal

The goal is to be able to calculate probabilities involving irregular shaped dice rolls. Here it is attempted to model the probabilities of rolling standard tri-rectangular tetrahedral dice on a hard surface, such as a table top. The vertices and edges of a tetrahedron were projected onto the surface of a sphere centered at the center of mass of the tetrahedron. By calculating the surface areas bounded by the resultant geodesics, baseline probabilities were achieved. Using a 3D printer, dice were constructed of uniform density and the results of rolling them were recorded. After calculating the corresponding confidence intervals, the …


Elements Of The Mathematical Formulation Of Quantum Mechanics, Keunjae Go May 2016

Elements Of The Mathematical Formulation Of Quantum Mechanics, Keunjae Go

Senior Honors Papers / Undergraduate Theses

In this paper, we will explore some of the basic elements of the mathematical formulation of quantum mechanics. In the first section, I will list the motivations for introducing a probability model that is quite different from that of the classical probability theory, but still shares quite a few significant commonalities. Later in the paper, I will discuss the quantum probability theory in detail, while paying a brief attention to some of the axioms (by Birkhoff and von Neumann) that illustrate both the commonalities and differences between classical mechanics and quantum mechanics. This paper will end with a presentation of …