Open Access. Powered by Scholars. Published by Universities.®

Probability Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Probability

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen Jan 2024

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen

Theses and Dissertations (Comprehensive)

The complex nature of the human brain, with its intricate organic structure and multiscale spatio-temporal characteristics ranging from synapses to the entire brain, presents a major obstacle in brain modelling. Capturing this complexity poses a significant challenge for researchers. The complex interplay of coupled multiphysics and biochemical activities within this intricate system shapes the brain's capacity, functioning within a structure-function relationship that necessitates a specific mathematical framework. Advanced mathematical modelling approaches that incorporate the coupling of brain networks and the analysis of dynamic processes are essential for advancing therapeutic strategies aimed at treating neurodegenerative diseases (NDDs), which afflict millions of …


Stochastic Navier-Stokes Equations With Markov Switching, Po-Han Hsu Mar 2021

Stochastic Navier-Stokes Equations With Markov Switching, Po-Han Hsu

LSU Doctoral Dissertations

This dissertation is devoted to the study of three-dimensional (regularized) stochastic Navier-Stokes equations with Markov switching. A Markov chain is introduced into the noise term to capture the transitions from laminar to turbulent flow, and vice versa. The existence of the weak solution (in the sense of stochastic analysis) is shown by studying the martingale problem posed by it. This together with the pathwise uniqueness yields existence of the unique strong solution (in the sense of stochastic analysis). The existence and uniqueness of a stationary measure is established when the noise terms are additive and autonomous. Certain exit time estimates …


The Martingale Approach To Financial Mathematics, Jordan M. Rowley Jun 2019

The Martingale Approach To Financial Mathematics, Jordan M. Rowley

Master's Theses

In this thesis, we will develop the fundamental properties of financial mathematics, with a focus on establishing meaningful connections between martingale theory, stochastic calculus, and measure-theoretic probability. We first consider a simple binomial model in discrete time, and assume the impossibility of earning a riskless profit, known as arbitrage. Under this no-arbitrage assumption alone, we stumble upon a strange new probability measure Q, according to which every risky asset is expected to grow as though it were a bond. As it turns out, this measure Q also gives the arbitrage-free pricing formula for every asset on our market. In …


Kinetic Monte Carlo Methods For Computing First Capture Time Distributions In Models Of Diffusive Absorption, Daniel Schmidt Jan 2017

Kinetic Monte Carlo Methods For Computing First Capture Time Distributions In Models Of Diffusive Absorption, Daniel Schmidt

HMC Senior Theses

In this paper, we consider the capture dynamics of a particle undergoing a random walk above a sheet of absorbing traps. In particular, we seek to characterize the distribution in time from when the particle is released to when it is absorbed. This problem is motivated by the study of lymphocytes in the human blood stream; for a particle near the surface of a lymphocyte, how long will it take for the particle to be captured? We model this problem as a diffusive process with a mixture of reflecting and absorbing boundary conditions. The model is analyzed from two approaches. …


Numerical Methods For Deterministic And Stochastic Phase Field Models Of Phase Transition And Related Geometric Flows, Yukun Li Aug 2015

Numerical Methods For Deterministic And Stochastic Phase Field Models Of Phase Transition And Related Geometric Flows, Yukun Li

Doctoral Dissertations

This dissertation consists of three integral parts with each part focusing on numerical approximations of several partial differential equations (PDEs). The goals of each part are to design, to analyze and to implement continuous or discontinuous Galerkin finite element methods for the underlying PDE problem.

Part One studies discontinuous Galerkin (DG) approximations of two phase field models, namely, the Allen-Cahn and Cahn-Hilliard equations, and their related curvature-driven geometric problems, namely, the mean curvature flow and the Hele-Shaw flow. We derive two discrete spectrum estimates, which play an important role in proving the sharper error estimates which only depend on a …


Pricing And Hedging Index Options With A Dominant Constituent Stock, Helen Cheyne Aug 2013

Pricing And Hedging Index Options With A Dominant Constituent Stock, Helen Cheyne

Electronic Thesis and Dissertation Repository

In this paper, we examine the pricing and hedging of an index option where one constituents stock plays an overly dominant role in the index. Under a Geometric Brownian Motion assumption we compare the distribution of the relative value of the index if the dominant stock is modeled separately from the rest of the index, or not. The former is equivalent to the relative index value being distributed as the sum of two lognormal random variables and the latter is distributed as a single lognormal random variable. Since these are not equal in distribution, we compare the two models. The …