Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Statistical, Nonlinear, and Soft Matter Physics

Experimental Evidence That Shear Bands In Metallic Glasses Nucleate Like Cracks, Alan A. Long, Wendelin Wright, Xiaojun Gu, Anna Thackray, Mayisha Nakib, Jonathan T. Uhl, Karin A. Dahmen Nov 2022

Experimental Evidence That Shear Bands In Metallic Glasses Nucleate Like Cracks, Alan A. Long, Wendelin Wright, Xiaojun Gu, Anna Thackray, Mayisha Nakib, Jonathan T. Uhl, Karin A. Dahmen

Faculty Journal Articles

Highly time-resolved mechanical measurements, modeling, and simulations show that large shear bands in bulk metallic glasses nucleate in a manner similar to cracks. When small slips reach a nucleation size, the dynamics changes and the shear band rapidly grows to span the entire sample. Smaller nucleation sizes imply lower ductility. Ductility can be increased by increasing the nucleation size relative to the maximum (“cutoff”) shear band size at the upper edge of the power law scaling range of their size distribution. This can be achieved in three ways: (1) by increasing the nucleation size beyond this cutoff size of the …


From Critical Behavior To Catastrophic Runaways: Comparing Sheared Granular Materials With Bulk Metallic Glasses, Alan A. Long, Dmitry Denisov, Peter Schall, Todd C. Hufnagel, Xiaojun Gu, Wendelin J. Wright, Karin A. Dahmen Nov 2019

From Critical Behavior To Catastrophic Runaways: Comparing Sheared Granular Materials With Bulk Metallic Glasses, Alan A. Long, Dmitry Denisov, Peter Schall, Todd C. Hufnagel, Xiaojun Gu, Wendelin J. Wright, Karin A. Dahmen

Faculty Journal Articles

The flow of granular materials and metallic glasses is governed by strongly correlated, avalanche-like deformation. Recent comparisons focused on the scaling regimes of the small avalanches, where strong similarities were found in the two systems. Here, we investigate the regime of large avalanches by computing the temporal profile or “shape” of each one, i.e., the time derivative of the stress-time series during each avalanche. We then compare the experimental statistics and dynamics of these shapes in granular media and bulk metallic glasses. We complement the experiments with a mean-field model that predicts a critical size beyond which avalanches turn into …


Force Oscillations Distort Avalanche Shapes, Louis W. Mcfaul, Wendelin J. Wright, Jordan Sickle, Karin A. Dahmen Sep 2019

Force Oscillations Distort Avalanche Shapes, Louis W. Mcfaul, Wendelin J. Wright, Jordan Sickle, Karin A. Dahmen

Faculty Journal Articles

Contradictory scaling behavior in experiments testing the principle of universality may be due to external oscillations. Thus, the effect of damped oscillatory external forces on slip avalanches in slowly deformed solids is simulated using a mean-field model. Akin to a resonance effect, oscillatory driving forces change the dynamics of avalanches with durations close to the oscillation period. This problem can be avoided by tuning mechanical resonance frequencies away from the range of the inverse avalanche durations. The results provide critical guidance for experimental tests for universality and a quantitative understanding of avalanche dynamics under a wide range of driving conditions.


Universal Slip Dynamics In Metallic Glasses And Granular Matter – Linking Frictional Weakening With Inertial Effects, Dmitri V. Denisov, Kinga A. Lorincz, Wendelin J. Wright, Todd C. Hufnagel, Aya Nawano, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen, Peter Schall Mar 2017

Universal Slip Dynamics In Metallic Glasses And Granular Matter – Linking Frictional Weakening With Inertial Effects, Dmitri V. Denisov, Kinga A. Lorincz, Wendelin J. Wright, Todd C. Hufnagel, Aya Nawano, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen, Peter Schall

Faculty Journal Articles

Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both …