Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Statistical, Nonlinear, and Soft Matter Physics

Towards Long Term Colloid Suspension In A Vertically Rotated System., Md Mahmudur Rahman Dec 2021

Towards Long Term Colloid Suspension In A Vertically Rotated System., Md Mahmudur Rahman

Electronic Theses and Dissertations

Within a colloidal suspension gravity may compromise the observation of governing physical interactions, especially those that are weak and/or take significant time to develop. Conducting the experiment in a long-term microgravity environment is a viable option to negate gravitational effects, though significant resources are required to do so. While it may not be possible to simulate long-term microgravity terrestrially, particles can resist quick sedimentation in a confined suspension system rotating vertically with appropriate rotation speed. The goal of the investigation is to demonstrate the existence of long-term particle suspension regime for a certain colloidal suspension while characterizing colloidal behavior due …


Entropic Density Functional Theory : Entropic Inference And The Equilibrium State Of Inhomogeneous Fluids, Ahmad Yousefi Dec 2021

Entropic Density Functional Theory : Entropic Inference And The Equilibrium State Of Inhomogeneous Fluids, Ahmad Yousefi

Legacy Theses & Dissertations (2009 - 2024)

A unified formulation of the density functional theory is constructed on the foundations of entropic inference in both the classical and the quantum regimes. The theory is introduced as an application of entropic inference for inhomogeneous fluids in thermal equilibrium. It is shown that entropic inference reproduces the variational principle of DFT when informationabout expected density of particles is imposed. In the classical regime, this process introduces a family of trial density-parametrized probability distributions, and consequently a trial entropy, from which the preferred one is found using the method of Maximum Entropy (MaxEnt). In the quantum regime, similarly, the process …


Pattern Formation And Phase Transition Of Connectivity In Two Dimensions, Arman Mohseni Kabir Oct 2021

Pattern Formation And Phase Transition Of Connectivity In Two Dimensions, Arman Mohseni Kabir

Doctoral Dissertations

This dissertation is devoted to the study and analysis of different types of emergent behavior in physical systems. Emergence is a phenomenon that has fascinated researchers from various fields of science and engineering. From the emergence of global pandemics to the formation of reaction-diffusion patterns, the main feature that connects all these diverse systems is the appearance of a complex global structure as a result of collective interactions of simple underlying components. This dissertation will focus on two types of emergence in physical systems: emergence of long-range connectivity in networks and emergence and analysis of complex patterns. The most prominent …


Nonlinear Optical Studies Of Interfacial Ferroelectricity And Strain Distribution In Perovskite Dielectric Films, Tony Le Sep 2021

Nonlinear Optical Studies Of Interfacial Ferroelectricity And Strain Distribution In Perovskite Dielectric Films, Tony Le

Dissertations, Theses, and Capstone Projects

Dielectric and ferroelectric perovskite films have been model energy storage structures for their low-dielectric loss, extremely high charge-discharge speed, and good temperature stability, yet there is still much to understand about the material’s limitations. This dissertation presents a detailed understanding of the strain-induced ferroelectricity at the boundary between a strontium titanate (SrTiO3) ultrathin film epitaxially grown on a germanium (Ge) substrate through optical second harmonic generation (SHG), and the polydomain distribution in the Zr-doped BaTiO3 (BZT) films by time-resolved pump-probe spectroscopy.

First, SHG measurements were performed to reveal interfacial ferroelectricity in the epitaxial SrTiO3/Ge (100) …


Wave Excitation And Dynamics In Disordered Systems, Yiming Huang Sep 2021

Wave Excitation And Dynamics In Disordered Systems, Yiming Huang

Dissertations, Theses, and Capstone Projects

This thesis presents studies of the field and energy excited in disordered systems as well as the dynamics of scattering.

Dynamic and steady state aspects of wave propagation are deeply connected in lossless open systems in which the scattering matrix is unitary. There is then an equivalence among the energy excited within the medium through all channels, the Wigner time delay, which is the sum of dwell times in all channels coupled to the medium, and the density of states. But these equivalences fall away in the presence of material loss or gain. In this paper, we use microwave measurements, …


An Experimental Study Of Lipid-Membrane Based Structure Formation And Development Of A Responsive System, Rui Cao Sep 2021

An Experimental Study Of Lipid-Membrane Based Structure Formation And Development Of A Responsive System, Rui Cao

Doctoral Dissertations

This thesis shows how controlling adhesive interactions among lipid bilayer vesicles and surrounding polymers or particles leads to formation of new mesoscopic and macroscopic structures. The vesicle-gel reported could find application as a closed-cell, 99% water solid platform for releasing cargo in response to a stimulus, either by tuning membrane permeability or by disruption of the vesicles.


Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko May 2021

Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko

Kirill Belashchenko Publications

The magnetic anisotropy in MgO-capped MnPt films and its voltage control are studied using first-principles calculations. Sharp variation of the magnetic anisotropy with film thickness, especially in the Pt-terminated film, suggests that it may be widely tuned by adjusting the film thickness. In thick films the linear voltage control coefficient is as large as 1.5 and -0.6 pJ/Vm for Pt-terminated and Mn-terminated interfaces, respectively. The combination of a widely tunable magnetic anisotropy energy and a large voltage-control coefficient suggest that MgO-capped MnPt films can serve as a versatile platform for magnetic memory and antiferromagnonic applications.


Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel May 2021

Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel

Graduate Theses and Dissertations

The aim of this dissertation is the investigation of the static and dynamical properties of the complex antiferroelectric materials using Effective Hamiltonian method and First principles calculations. In chapter 3, a novel elemental interatomic coupling in perovskite materials which bilinearly couples the antiferroelectric displacements of cations with the rotations of the oxygen octahedra. This new coupling explains a very complex crystal structure of prototypical antiferroelectric PbZrO3. My explanation provides a unified description of many other complex antipolar crystal structures in variety of perovskite materials, including the occurrence of incommensurate phases in some of them. In chapter 4, results and analysis …