Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 47

Full-Text Articles in Statistical, Nonlinear, and Soft Matter Physics

Quantics Tensor Trains: The Study Of A Continuous Lattice Model And Beyond, Aleix Bou Comas Jun 2024

Quantics Tensor Trains: The Study Of A Continuous Lattice Model And Beyond, Aleix Bou Comas

Dissertations, Theses, and Capstone Projects

This four-chapter dissertation studies the efficient discretization of continuous variable functions with tensor train representation. The first chapter describes all the methodology used to discretize functions and store them efficiently. In this section, the algorithm tensor renormalization group is explained for self-containment purposes. The second chapter centers around the XY model. Quantics tensor trains are used to describe the transfer matrix of the model and compute one and two-dimensional quantities. The one dimensional magnitudes are compared to analytical results with an agreement close to machine precision. As for two dimensions, the analytical results cannot be computed. However, the critical temperature …


Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn May 2023

Effective Non-Hermiticity And Topology In Markovian Quadratic Bosonic Dynamics, Vincent Paul Flynn

Dartmouth College Ph.D Dissertations

Recently, there has been an explosion of interest in re-imagining many-body quantum phenomena beyond equilibrium. One such effort has extended the symmetry-protected topological (SPT) phase classification of non-interacting fermions to driven and dissipative settings, uncovering novel topological phenomena that are not known to exist in equilibrium which may have wide-ranging applications in quantum science. Similar physics in non-interacting bosonic systems has remained elusive. Even at equilibrium, an "effective non-Hermiticity" intrinsic to bosonic Hamiltonians poses theoretical challenges. While this non-Hermiticity has been acknowledged, its implications have not been explored in-depth. Beyond this dynamical peculiarity, major roadblocks have arisen in the search …


Modelling Cell Population Growth, Mahmood Mazarei Apr 2023

Modelling Cell Population Growth, Mahmood Mazarei

Electronic Thesis and Dissertation Repository

The growth of biological matter, e.g., tumor invasion, depends on various factors, mainly the tissue’s mechanical properties, implying elasticity, stiffness, or apparent viscosity. These properties are impacted by the characteristics of the tissue’s extracellular matrix and constituent cells, including, but not limited to, cell membrane stiffness, cell cytoskeleton mechanical properties, and the intensity and distribution of focal adhesions over the cell membrane. To compute and study the mechanical properties of tissues during growth and confluency, a theoretical and computational framework, called CellSim3D, was developed in our group based on a three-dimensional kinetic division model.

In this work, CellSim3D is …


Long-Range And Chaotic Active Mixing Of Swimming Microbes In A Vortex Chain Flow, Nghia Le Jan 2023

Long-Range And Chaotic Active Mixing Of Swimming Microbes In A Vortex Chain Flow, Nghia Le

Honors Theses

We present experiments studying the motion and active mixing of swimming mi- crobes in laminar, vortex-dominated fluid flows. We are testing a theory that predicts the existence of swimming invariant manifolds (SwIMs) - invisible, one-way barriers blocking the paths of self-propelled tracers in the flow in one direction. We also pro- pose that the SwIMs together can form chute structures in three-dimensional phase space that facilitate cross-vortex transport of the microbes. We also observe evidence of how these structures promote long-range transport at different non-dimensional velocities (microbe’s velocity relative to flow velocity). Long-range transport is quan- tified by measuring the …


Symmetry Breaking Effects In Low-Dimensional Quantum Systems, Ke Wang Oct 2022

Symmetry Breaking Effects In Low-Dimensional Quantum Systems, Ke Wang

Doctoral Dissertations

Quantum criticality in low-dimensional quantum systems is known to host exotic behaviors. In quantum one-dimension (1D), the emerging conformal group contains infinite generators, and conformal techniques, e.g., operator product expansion, give accurate and universal descriptions of underlying systems. In quantum two-dimension (2D), the electronic interaction causes singular corrections to Fermi-liquids characteristics. Meanwhile, the Dirac fermions in topological 2D materials can greatly enrich emerging phenomena. In this thesis, we study the symmetry-breaking effects of low-dimensional quantum criticality. In 1D, we consider two cases: time-reversal symmetry (TRS) breaking in the Majorana conformal field theory (CFT) and the absence of conformal symmetry in …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Collective Motion And Phase Diagram Of Self-Propelled Vibrated Hard Squares, Zhejun Shen Jun 2022

Collective Motion And Phase Diagram Of Self-Propelled Vibrated Hard Squares, Zhejun Shen

Doctoral Dissertations

In equilibrium, matter condenses into ordered phases due to the combined effects of inter-particle interactions and entropy. In this dissertation, we explore the self-propulsion of particles as an additional nonequilibrium consideration in the mechanisms for ordering. Our experiments employ square-shaped hard particles; in equilibrium, when particle motions are randomly directed, squares form entropically-stabilized phases in which first their orientations, and then their positions, get locked in relative to each other, depending on the density of coverage. When the square tiles are modified to have small propulsion along some body-fixed axis we find that their tendency to order is profoundly altered. …


Nonequilibrium And Nonlinear Dynamics In Collective Spin Models And Implementations Using Quantum Feedback Control, Manuel H. Munoz Arias May 2022

Nonequilibrium And Nonlinear Dynamics In Collective Spin Models And Implementations Using Quantum Feedback Control, Manuel H. Munoz Arias

Physics & Astronomy ETDs

Out-of-equilibrium dynamics generalizes the study of ground states of quantum Hamiltonians at zero temperature, to that of dynamical quasi-steady states of quantum systems far from equilibrium. In this dissertation I discuss dynamical quantum phase transitions and out-of-equilibrium phases of matter in models of collective spins with multi-body interactions. These models, based on collective degrees of freedom, allow an exact description of the thermodynamic limit via the mean-field description. In this limit, the nonequilibrium dynamics of properties of quantum states is mapped to the nonlinear dynamics of classical variables, and thus it can be analyzed using tools from the theory of …


Charge Transport And Spin Dynamics Of Color Centers In Diamond, Damon Daw Feb 2022

Charge Transport And Spin Dynamics Of Color Centers In Diamond, Damon Daw

Dissertations, Theses, and Capstone Projects

Solid state defects in diamond are promising candidates for room temperature quantum information processors (1, 3, 5). Chief among these defects is the nitrogen vacancy center (‘NV center’ or ‘NV’). The NV has long coherence times (at 300K) and its state is easily initialized, manipulated and read out (5). However, the outstanding issue of entangling NV centers in a scalable fashion, at room temperature remains a challenge. This thesis presents experimental and theoretical work aimed at achieving this goal by developing the ‘flying qubit’ framework in (1). This method for remote entanglement utilizes a charge carrier (initialized into a definite …


Generally Covariant Theory Of Multipole Moment Conserving Quasiparticles, Gavin Eric Riley Jan 2022

Generally Covariant Theory Of Multipole Moment Conserving Quasiparticles, Gavin Eric Riley

Honors Theses and Capstones

This report represents the creation of a field theory which is capable of describing quasiparticle excitations that preserve 2^k -pole moments. These quasiparticles exhibit certain ’semidynamic’ properties such as individual particle immobility but free movement of bound 2^L-tuples. We provide a review of work done on dipole conserving fractons and their dynamics [1] and expand upon it to describe higher moment conserving systems with global quadratic (and higher) phase symmetry. This requires the selection of the temporal and spatial directions. The selection of a temporal direction is done with a foliation defined by an anisotropic scaling of space and time, …


Towards Long Term Colloid Suspension In A Vertically Rotated System., Md Mahmudur Rahman Dec 2021

Towards Long Term Colloid Suspension In A Vertically Rotated System., Md Mahmudur Rahman

Electronic Theses and Dissertations

Within a colloidal suspension gravity may compromise the observation of governing physical interactions, especially those that are weak and/or take significant time to develop. Conducting the experiment in a long-term microgravity environment is a viable option to negate gravitational effects, though significant resources are required to do so. While it may not be possible to simulate long-term microgravity terrestrially, particles can resist quick sedimentation in a confined suspension system rotating vertically with appropriate rotation speed. The goal of the investigation is to demonstrate the existence of long-term particle suspension regime for a certain colloidal suspension while characterizing colloidal behavior due …


Entropic Density Functional Theory : Entropic Inference And The Equilibrium State Of Inhomogeneous Fluids, Ahmad Yousefi Dec 2021

Entropic Density Functional Theory : Entropic Inference And The Equilibrium State Of Inhomogeneous Fluids, Ahmad Yousefi

Legacy Theses & Dissertations (2009 - 2024)

A unified formulation of the density functional theory is constructed on the foundations of entropic inference in both the classical and the quantum regimes. The theory is introduced as an application of entropic inference for inhomogeneous fluids in thermal equilibrium. It is shown that entropic inference reproduces the variational principle of DFT when informationabout expected density of particles is imposed. In the classical regime, this process introduces a family of trial density-parametrized probability distributions, and consequently a trial entropy, from which the preferred one is found using the method of Maximum Entropy (MaxEnt). In the quantum regime, similarly, the process …


Pattern Formation And Phase Transition Of Connectivity In Two Dimensions, Arman Mohseni Kabir Oct 2021

Pattern Formation And Phase Transition Of Connectivity In Two Dimensions, Arman Mohseni Kabir

Doctoral Dissertations

This dissertation is devoted to the study and analysis of different types of emergent behavior in physical systems. Emergence is a phenomenon that has fascinated researchers from various fields of science and engineering. From the emergence of global pandemics to the formation of reaction-diffusion patterns, the main feature that connects all these diverse systems is the appearance of a complex global structure as a result of collective interactions of simple underlying components. This dissertation will focus on two types of emergence in physical systems: emergence of long-range connectivity in networks and emergence and analysis of complex patterns. The most prominent …


Nonlinear Optical Studies Of Interfacial Ferroelectricity And Strain Distribution In Perovskite Dielectric Films, Tony Le Sep 2021

Nonlinear Optical Studies Of Interfacial Ferroelectricity And Strain Distribution In Perovskite Dielectric Films, Tony Le

Dissertations, Theses, and Capstone Projects

Dielectric and ferroelectric perovskite films have been model energy storage structures for their low-dielectric loss, extremely high charge-discharge speed, and good temperature stability, yet there is still much to understand about the material’s limitations. This dissertation presents a detailed understanding of the strain-induced ferroelectricity at the boundary between a strontium titanate (SrTiO3) ultrathin film epitaxially grown on a germanium (Ge) substrate through optical second harmonic generation (SHG), and the polydomain distribution in the Zr-doped BaTiO3 (BZT) films by time-resolved pump-probe spectroscopy.

First, SHG measurements were performed to reveal interfacial ferroelectricity in the epitaxial SrTiO3/Ge (100) …


Wave Excitation And Dynamics In Disordered Systems, Yiming Huang Sep 2021

Wave Excitation And Dynamics In Disordered Systems, Yiming Huang

Dissertations, Theses, and Capstone Projects

This thesis presents studies of the field and energy excited in disordered systems as well as the dynamics of scattering.

Dynamic and steady state aspects of wave propagation are deeply connected in lossless open systems in which the scattering matrix is unitary. There is then an equivalence among the energy excited within the medium through all channels, the Wigner time delay, which is the sum of dwell times in all channels coupled to the medium, and the density of states. But these equivalences fall away in the presence of material loss or gain. In this paper, we use microwave measurements, …


An Experimental Study Of Lipid-Membrane Based Structure Formation And Development Of A Responsive System, Rui Cao Sep 2021

An Experimental Study Of Lipid-Membrane Based Structure Formation And Development Of A Responsive System, Rui Cao

Doctoral Dissertations

This thesis shows how controlling adhesive interactions among lipid bilayer vesicles and surrounding polymers or particles leads to formation of new mesoscopic and macroscopic structures. The vesicle-gel reported could find application as a closed-cell, 99% water solid platform for releasing cargo in response to a stimulus, either by tuning membrane permeability or by disruption of the vesicles.


Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel May 2021

Study Of Static And Dynamical Properties Of Complex Antiferroelectrics Materials, Kinnary Yogeshbhai Patel

Graduate Theses and Dissertations

The aim of this dissertation is the investigation of the static and dynamical properties of the complex antiferroelectric materials using Effective Hamiltonian method and First principles calculations. In chapter 3, a novel elemental interatomic coupling in perovskite materials which bilinearly couples the antiferroelectric displacements of cations with the rotations of the oxygen octahedra. This new coupling explains a very complex crystal structure of prototypical antiferroelectric PbZrO3. My explanation provides a unified description of many other complex antipolar crystal structures in variety of perovskite materials, including the occurrence of incommensurate phases in some of them. In chapter 4, results and analysis …


Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …


Kinetics Of The Crystal-Melt Phase Transformation In Semicrystalline Polymers, Kiran Subramaniam Iyer Jul 2020

Kinetics Of The Crystal-Melt Phase Transformation In Semicrystalline Polymers, Kiran Subramaniam Iyer

Doctoral Dissertations

The assembly of long-chain polymers into an ordered state is a process that has puzzled polymer scientists for several decades. A process that is largely controlled by the strength of intermolecular attractions in small molecular systems, this crystallization in the case of polymers is controlled by a competition between the aforementioned force of attraction between monomers and the formidable conformational entropy of polymer chains. Any factor that affects this conformational entropy, whether that is an equilibrium thermodynamic factor or a kinetic factor, has the ability to control polymer crystallization. In this thesis, we focus on understanding the underlying kinetic processes …


Duality In A Model Of Layered Superfluids And Sliding Phases, Steven Vayl Feb 2020

Duality In A Model Of Layered Superfluids And Sliding Phases, Steven Vayl

Dissertations, Theses, and Capstone Projects

The intent of my project is to determine if the proposal of sliding phases in XY layered systems has physical ground. It will be done by comparing numerical and analytical results for a layered XY models. Sliding phases were first proposed in the context of DNA complexes and then extended to XY models, 1D coupled wires and superfluid films. The existence of the sliding phase would mean that there is a phase transition from 3D to 2D behavior. Such systems have been studied both in the clean case and with disorder. The idea of the sliding phases is based on …


Effects Of Aperiodicity And Frustration On The Magnetic Properties Of Artificial Quasicrystals, Barry Farmer Jan 2020

Effects Of Aperiodicity And Frustration On The Magnetic Properties Of Artificial Quasicrystals, Barry Farmer

Theses and Dissertations--Physics and Astronomy

Quasicrystals have been shown to exhibit physical properties that are dramatically different from their periodic counterparts. A limited number of magnetic quasicrystals have been fabricated and measured, and they do not exhibit long-range magnetic order, which is in direct conflict with simulations that indicate such a state should be accessible. This dissertation adopts a metamaterials approach in which artificial quasicrystals are fabricated and studied with the specific goal of identifying how aperiodicity affects magnetic long-range order. Electron beam lithography techniques were used to pattern magnetic thin films into two types of aperiodic tilings, the Penrose P2, and Ammann-Beenker tilings. SQUID …


Effects Of Impurities On Calcium Oxalate Crystallization As Measured By Atomic Force Microscopy, Himasha Wijesekara Dec 2019

Effects Of Impurities On Calcium Oxalate Crystallization As Measured By Atomic Force Microscopy, Himasha Wijesekara

Electronic Thesis and Dissertation Repository

Calcium oxalate crystals are found in kidney stones as either calcium oxalate monohydrate (COM) or calcium oxalate dihydrate (COD). COM crystals are the most abundant form as they are thermodynamically more stable than COD crystals under physiological conditions. Certain aspartic acid-rich molecules such as osteopontin (OPN) are known to affect stone formation by inhibiting COM and COD growth. We have studied COM {010} and COD {100} faces in the presence of OPN, poly-aspartic acid (poly-ASP) and synthetic peptides derived from OPN to investigate the inhibitor mechanism.

We observed that poly-ASP preferentially inhibits one particular direction of {010} faces on COM …


Morphological Study Of Voids In Ultra-Large Models Of Amorphous Silicon, Durga Prasad Paudel Aug 2019

Morphological Study Of Voids In Ultra-Large Models Of Amorphous Silicon, Durga Prasad Paudel

Dissertations

The microstructure of voids in pure and hydrogen-rich amorphous silicon (a:Si) network was studied in ultra-large models of amorphous silicon, using classical and quantum- mechanical simulations, on the nanometer length scale. The nanostructure, particularly voids of device grade ultra-large models of a:Si was studied, in which observed three-dimensional realistic voids were extended using geometrical approach within the experimental limit of void-volume fractions. In device-grade simulated models, the effect of void morphology; size, shape, number density, and distribution on simulated scattering intensities in small- angle region were investigated. The evolution of voids on annealing below the crystallization temperature …


Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky Feb 2019

Emergent Critical Properties In Liquid-Gas Transition And Single Dislocations In Solid He4, Max Yarmolinsky

Dissertations, Theses, and Capstone Projects

My research focuses on the analytical and numerical study of seemingly completely different systems - the classical critical point of the liquid-gas transition and a quantum topological defect (dislocation) in solid Helium-4. The unifying theme, though, is Emergence - the appearance of unexpected qualities at large distance and time scales in these systems. Our results resolve the long standing controversy about the nature of the liquid-gas criticality by showing with high confidence that it is the same as that of Ising ferromagnet. In solid 4He, a quantum superclimbing dislocation, which is expected to be violating space-time symmetry according to …


Geometry, Growth And Pattern Formation In Thin Elastic Structures, Salem Al-Mosleh Oct 2018

Geometry, Growth And Pattern Formation In Thin Elastic Structures, Salem Al-Mosleh

Doctoral Dissertations

Thin shells are abundant in nature and industry, from atomic to planetary scales. The mechanical behavior of a thin shell depends crucially on its geometry and embedding in 3 dimensions (3D). In fact, the behavior of extremely thin shells becomes scale independent and only depends on geometry. That is why the crumpling of graphene will have similarities to the crumpling of paper. In this thesis, we start by discussing the static behavior of thin shells, highlighting the role of asymptotic curves (curves with zero normal curvature) in determining the possible deformations and in controlling the folding patterns. In particular, we …


Complex Ground States Of Vortices And Filaments, Qingyou Meng Jul 2018

Complex Ground States Of Vortices And Filaments, Qingyou Meng

Doctoral Dissertations

This dissertation consists of two parts. In the first part, we studied the ground state configurations of vortices with multi-scale inter-vortex interactions in layered superconductors. We found that by tuning the multi-scale interaction length, we could create vortex lattice ground states with different symmetries. It has been proposed that these structures can trap ultra-cold atoms for use in quantum emulators. In further work, we measured the phase diagram and discovered many new phases by changing the relative magnitude of the interaction ranges. In the second part, we analyzed the ground state configurations of confined filaments with long-range repulsive interactions. We …


Emergent Phenomena In Quantum Critical Systems, Kun Chen Jul 2018

Emergent Phenomena In Quantum Critical Systems, Kun Chen

Doctoral Dissertations

A quantum critical point (QCP) is a point in the phase diagram of quantum matter where a continuous phase transition takes place at zero temperature. Low-dimensional quantum critical systems are strongly correlated, therefore hosting nontrivial emergent phenomena. In this thesis, we first address two decades-old problems on quantum critical dynamics. We then reveal two novel emergent phenomena of quantum critical impurity problems. In the first part of the thesis, we address the linear response dynamics of the $(2+1)$-dimensional $O(2)$ quantum critical universality class, which can be realized in the ultracold bosonic system near the superfluid (SF) to Mott insulator (MI) …


Pseudo Power Law Statistics In A Jammed, Amorphous Solid, Jacob Brian Hass Jun 2018

Pseudo Power Law Statistics In A Jammed, Amorphous Solid, Jacob Brian Hass

Physics

Simulations have shown that in many solid materials, rearrangements within the solid obey power-law statistics. A connection has been proposed between these statistics and the ability of a system to reach a limit cycle under cyclic driving. We study experimentally a 2D jammed solid that reaches such a limit cycle. Our solid consists of microscopic plastic beads adsorbed at an oil-water interface and cyclically sheared by a magnetically driven needle. We track each particles trajectory in the solid to identify rearrangements. By associating particles both spatially and temporally, we can measure the extent of each rearrangement. We study specifically the …


Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela Jun 2018

Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela

Physics

Carbon nanotubes (CNTs) have been subject to extensive research towards their possible applications in the world of nanoelectronics. The interest in carbon nanotubes originates from their unique variety of properties useful in nanoelectronic devices. One key feature of carbon nanotubes is that the chiral angle at which they are rolled determines whether the tube is metallic or semiconducting. Of main interest to this project are devices containing a thin film of randomly arranged carbon nanotubes, known as carbon nanotube networks. The presence of semiconducting tubes in a CNT network can lead to a switching effect when the film is electro-statically …


Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides May 2018

Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides

Physics & Astronomy ETDs

This dissertation is a study of the theoretical framework of the practical as well as fundamental problem of the process of relaxation to equilibrium of quantum mechanical systems. The fundamental aspect is concerned with the simultaneous occurrence of decoherence and population equilibration. The practical aspect deals with experimental observations of vibrational relaxation of molecules embedded in liquids or solids. The systems include, but are not limited to, the nondegenerate dimer and harmonic oscillator, in one case weak and in the other strong, interaction with a thermal bath. The time dependence of the energy and the temperature dependence of the relaxation …