Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Statistical, Nonlinear, and Soft Matter Physics

Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond Jan 2024

Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond

Physics Publications

Kerr instability can be exploited to amplify visible, near-infrared, and midinfrared ultrashort pulses. We use the results of Kerr instability amplification theory to inform our simulations amplifying few-cycle pulses. We show that the amplification angle dependence is simplified to the phase-matching condition of four-wave mixing when the intense pump is considered. Seeding with few-cycle pulses near the pump leads to broadband amplification without spatial chirp, while longer pulses undergo compression through amplification. Pumping in the midinfrared leads to multioctave spanning amplified pulses with single-cycle duration not previously predicted. We discuss limitations of the amplification process and optimizing pump and seed …


Spectral Broadening For Pulse Compression Using Liquid Alcohols, Jacob A. Stephen, Chathurangani J. Arachchige, Tj Hammond Jan 2022

Spectral Broadening For Pulse Compression Using Liquid Alcohols, Jacob A. Stephen, Chathurangani J. Arachchige, Tj Hammond

Physics Publications

Although gases, and more recently solids, have been used to create few-cycle pulses, we explore using liquid alcohols for spectral broadening and femtosecond pulse compression. By using a series of 1 cm cuvettes filled with 1-decanol, we have compressed a pulse from 83.6 fs down to 31.3 fs with a spectrum capable of supporting 25 fs pulses without filamentation.We measure the nonlinear index of refraction for various liquids, measuring n2 = (6.8 ± 0.5) × 10−20 m2 W−1 for 1-decanol.We demonstrate liquids to be a compact, simple, versatile, and cost-effective material to obtain broad spectra.