Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nuclear

Nuclear physics

2023

Articles 1 - 3 of 3

Full-Text Articles in Quantum Physics

Quantum Computing For Nuclear Physics, Aikaterini Nikou Jan 2023

Quantum Computing For Nuclear Physics, Aikaterini Nikou

2023 REYES Proceedings

Nuclear physics can greatly advance by taking advantage of quantum computing. Quantum computing can play a pivotal role in advancing nuclear physics and can allow for the description of physical situations and problems that are prohibitive to solve using classical computing due to their complexity. Some of the problems whose complexity requires using quantum computing to describe are: interacting quantum many-body and Quantum Field Theory problems such as simulating strongly interacting fields such as Quantum Chromodynamics with physical time evolution, the determination of the shape/phase of a nucleus using the time evolution of an appropriated observable as well as identifying …


Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers Jan 2023

Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers

Physics Faculty Publications

The factorization theorems of QCD apply equally well to most simple quantum field theories that require renormalization but where direct calculations are much more straightforward. Working with these simpler theories is convenient for stress testing the limits of the factorization program and for examining general properties of the parton density functions or other correlation functions that might be necessary for a factorized description of a process. With this view in mind, we review the steps of factorization in a real scalar Yukawa field theory for both deep inelastic scattering and semi-inclusive deep inelastic scattering cross sections. In the case of …


Liouvillian Dynamics Of The Open Schwinger Model: String Breaking And Kinetic Dissipation In A Thermal Medium, Kyle Lee, James Mulligan, Felix Ringer, Xiaojun Yao Jan 2023

Liouvillian Dynamics Of The Open Schwinger Model: String Breaking And Kinetic Dissipation In A Thermal Medium, Kyle Lee, James Mulligan, Felix Ringer, Xiaojun Yao

Physics Faculty Publications

Understanding the dynamics of bound state formation is one of the fundamental questions in confining quantum field theories such as Quantum Chromodynamics (QCD). One hadronization mechanism that has garnered significant attention is the breaking of a string initially connecting a fermion and an antifermion. Deepening our understanding of real-time string-breaking dynamics with simpler, lower dimensional models like the Schwinger model can improve our understanding of the hadronization process in QCD and other confining systems found in condensed matter and statistical systems. In this paper, we consider the string-breaking dynamics within the Schwinger model and investigate its modification inside a thermal …