Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Quantum Physics

Energy Functional For Nuclear Masses, Michael Giovanni Bertolli Dec 2011

Energy Functional For Nuclear Masses, Michael Giovanni Bertolli

Doctoral Dissertations

An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional is based on Hohenberg-Kohn theory. Motivation for its form comes from both phenomenology and relevant microscopic systems, such as the three-level Lipkin Model. A global fit of the 17-parameter functional to nuclear masses yields a root- mean-square deviation of χ[chi] = 1.31 MeV, on the order of other mass models. The construction of the energy functional includes the development of a systematic method for selecting and testing possible functional terms. Nuclear radii are computed within …


Baryon Spectrum Analysis Using Dirac's Covariant Constraint Dynamics, Joshua Franklin Whitney Dec 2011

Baryon Spectrum Analysis Using Dirac's Covariant Constraint Dynamics, Joshua Franklin Whitney

Doctoral Dissertations

We determine the energy spectrum of the baryons by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. We first review constraint dynamics for a relativistic two-body system in order to assemble the necessary two body framework for the three-body problem. We review the different types of covariant two-body interactions involved in constraint dynamics, including vector and scalar, and solve the problem of energy eigenstates using constraint dynamics. We use the Two …


Experimental Results In Dis, Sidis And Des From Jefferson Lab, Sebastian E. Kuhn Jan 2011

Experimental Results In Dis, Sidis And Des From Jefferson Lab, Sebastian E. Kuhn

Physics Faculty Publications

Jefferson Lab’s electron accelerator in its present incarnation, with a maximum beam energy slightly above 6 GeV, has already enabled a large number of experiments expanding our knowledge of nucleon and nuclear structure (especially in Deep Inelastic Scattering—DIS—at moderately high x, and in the resonance region). Several pioneering experiments have yielded first results on Deeply Virtual Compton Scattering (DVCS) and other Deep Exclusive Processes (DES), and the exploration of the rich landscape of transverse momentum‐dependent (TMD) structure functions using Semi‐Inclusive electron scattering (SIDIS) has begun. With the upgrade of CEBAF to 12 GeV now underway, a significantly larger kinematic …