Open Access. Powered by Scholars. Published by Universities.®

Other Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Arkansas, Fayetteville

Theses/Dissertations

Discipline
Keyword
Publication Year
Publication

Articles 1 - 7 of 7

Full-Text Articles in Other Physics

Characterization Of 2d Quantum Materials Using Ai And Large-Scale Quantum Data Collection, Apoorva Bisht May 2023

Characterization Of 2d Quantum Materials Using Ai And Large-Scale Quantum Data Collection, Apoorva Bisht

Computer Science and Computer Engineering Undergraduate Honors Theses

2D materials like hexagonal boron nitride, graphene, and tungsten diselenide are widely utilized for studying their unique mechanical and opto-electronic properties to exploit them to make transistors and fabricating a variety of other devices. All these applications require that the 2D materials used be of specific uniform thickness. Until very recently, this process has been largely manual and tedious. However, few applications exploit the characteristic color-to-thickness correspondence of these near-transparent materials. To continue this effort, in this work we create a large-scale dataset for three different materials (hBN, graphene, and WSe$_2$) to train and test an image segmentation model along …


Scattering Of Few Photon Fields By Two Level Systems In A One Dimensional Geometry, William Konyk Aug 2018

Scattering Of Few Photon Fields By Two Level Systems In A One Dimensional Geometry, William Konyk

Graduate Theses and Dissertations

Recent experimental progress has realized strong, efficient coupling of effective two level systems to waveguides. We study the scattering of multimode photons from such emitters coupled losslessly to the confined geometry of a one dimensional waveguide. We develop novel techniques for describing the scattered state of both single and multi-photon wavepackets and explore how such wavepackets interact with arrays of emitters coupled to a one dimensional waveguide. Finally, we apply these techniques and analyze the capability of two particular systems to act as a quantum conditional logic gate.


Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling Dec 2017

Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling

Graduate Theses and Dissertations

I have investigated the energy output of active galactic nuclei (AGN) in order to understand how these objects evolve and the impact they may have on host galaxies. First, I looked at a sample of 96 AGN at redshifts $z \sim 2, 3,$ and $4$ which have imaging and thus luminosity measurements in the $griz$ and $JHK$ observed wavebands. For these galaxies, I have co-epochal data across those bands which accounted for variability in AGN luminosity. I used the luminosity measurements in the five bands to construct spectral energy distributions (SED) in the emitted optical-UV bands for each AGN. I …


Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal Dec 2016

Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal

Graduate Theses and Dissertations

The nonlinear studies of two-dimensional (2D) nanomaterials, specifically graphene, are very significant since graphene is finding its usefulness in handling the enormous heat in nanoscale high-density power electronics. Graphene has emerged to be a promising nanomaterial as an excellent heat spreader due to its high thermal conductivity. However, the experimental nonlinear study of graphene materials and their application in developing future optoelectronic devices demands for more developed research.

The research objective is first to build a precise, and sensitive technique to investigate and understand the thermal nonlinear properties, including nonlinear refractive index (n2), nonlinear absorption coefficient (β), and thermo-optic coefficient …


Particle Image Velocimetry Design & Installation, Zach Ritchie May 2016

Particle Image Velocimetry Design & Installation, Zach Ritchie

Mechanical Engineering Undergraduate Honors Theses

This work will mainly focus on the design, construction, and installation of the Particle Image Velocimetry (PIV) system in the Chemical Hazards Research Center wind tunnel. The PIV system utilizes a Class IV (double pulsed) laser, optics to produce a light sheet, timing circuitry, and a high-resolution camera (with buffered output) to measure a system’s velocity (two-dimensional) field by determining the displacement of particles over the time between laser pulses. For maximum mobility and functionality, the PIV system was installed in the center of the tunnel on a moveable cart with the laser and camera mounted to an adjustable support. …


Dark Matter Halo Concentration And The Evolution Of Spiral Structure In N-Body, Barred Spiral Galaxies, Jazmin Esmeralda Berlanga Medina Dec 2015

Dark Matter Halo Concentration And The Evolution Of Spiral Structure In N-Body, Barred Spiral Galaxies, Jazmin Esmeralda Berlanga Medina

Graduate Theses and Dissertations

Motivated by the evidence of relationships between pitch angle (the tightness of spiral arm structure in the disk), P, and various indicators of central mass concentration, as well as the theoretical relationship between halo mass concentration and the density of visible matter in the central part of the galaxy, we look at a possible relationship between P and cvir (the virial concentration of the dark matter halo) in N-body simulations of barred, spiral galaxies. We also look at the evolution of pitch angle over time in higher temporal resolution than any data currently available in the literature. We find that …


Investigation Of Negative Differential Resistance Phenomena In Quantum Well Heterostructures, Nazariy Andrushchak May 2012

Investigation Of Negative Differential Resistance Phenomena In Quantum Well Heterostructures, Nazariy Andrushchak

Graduate Theses and Dissertations

Increasing interest in entirely new possibilities for quantum mechanical description of carriers transport is becoming more evident with the developing advancements in epitaxial growth technique. Consequently, molecular beam epitaxy (MBE) technique is considered to be the most precise technique that allows the growth of ultra-thin layers of different compositions.

Those structures can be designed to investigate the wave-nature of carriers, which broadens the possibilities in device design and fabrication for a specific area. In this thesis the fundamental study of the real space charge transfer (RST) mechanism that took place in quantum well heterostructures and led to the negative differential …