Open Access. Powered by Scholars. Published by Universities.®

Other Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Other Physics

Analytical Models Of Neutron Spectral Fluence, Kerma And Absorbed-Dose For Proton Therapy, Suman Shrestha Aug 2018

Analytical Models Of Neutron Spectral Fluence, Kerma And Absorbed-Dose For Proton Therapy, Suman Shrestha

LSU Master's Theses

Abstract

Purpose: The accurate prediction of stray neutron dose has become increasingly important as it increases the risk of second cancer development after proton therapy. Previously reported analytical models predicted the quantity dose equivalent, which includes physical and biological considerations but does not explicitly take into account material dependence and variation in the radiation quality. The purpose of this study was to investigate the feasibility of an analytical model of absorbed dose to water from stray neutrons in proton therapy.

Methods: To calculate neutron absorbed dose and kerma in water, the authors developed analytical models of neutron spectral fluence and …


Development Of 3d-Printed Patient Specific Bolus For Clinical Use In Total Scalp Irradiation, Garrett Baltz May 2018

Development Of 3d-Printed Patient Specific Bolus For Clinical Use In Total Scalp Irradiation, Garrett Baltz

Dissertations & Theses (Open Access)

Total scalp irradiation (TSI) is a specialized radiation therapy technique that aims to deliver a uniform dose to the entire scalp. Original electron-based TSI techniques had limited homogeneity due to hot and cold spots created at field junctions due to the multiple matched fields that were required to treat the entire scalp. The transition to photon volumetric-modulated arc therapy based TSI techniques has improved homogeneity, to the point where non-conformal bolus is now a limiting factor. Bolus is required to build-up full dose to the scalp surface in total scalp irradiation. Creating bolus that is conformal to the scalp is …


Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett Jan 2018

Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett

Theses and Dissertations

Four dimensional imaging has become part of the standard of care for diagnosing and treating non-small cell lung cancer. In radiotherapy applications 4D fan-beam computed tomography (4D-CT) and 4D cone-beam computed tomography (4D-CBCT) are two advanced imaging modalities that afford clinical practitioners knowledge of the underlying kinematics and structural dynamics of diseased tissues and provide insight into the effects of regular organ motion and the nature of tissue deformation over time. While these imaging techniques can facilitate the use of more targeted radiotherapies, issues surrounding image quality and accuracy currently limit the utility of these images clinically.

The purpose of …