Open Access. Powered by Scholars. Published by Universities.®

Other Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Physics

Exploring Methods For Earthquake Prediction: The Effects Of Water On The Flow Of Stress-Activated Electric Currents In Igneous Rocks, Aaron M. Jahoda, Friedemann T. Freund Aug 2011

Exploring Methods For Earthquake Prediction: The Effects Of Water On The Flow Of Stress-Activated Electric Currents In Igneous Rocks, Aaron M. Jahoda, Friedemann T. Freund

STAR Program Research Presentations

Much of the devastation and damage of earthquakes can be attributed to the fact that they occur suddenly and without much warning, which limits the ability of people to evacuate and/or properly prepare. One method, however, that might be used to predict seismic events is the generation of electric currents in rocks when stresses are applied. It is observed in this research that the application of direct force onto samples of igneous rock causes the rocks to generate a measurable current, which is attributed to positive-hole charges moving within the oxygen sub-lattice. Because large and changing forces are acted upon …


Heat Recovery Mechanism In The Excitation Of Radiative Polaritons By Broadband Infrared Radiation In Thin Oxide Films, Anita J. Vincent-Johnson, Kyle A. Vasquez, John E. Bridstrup, Andrew E. Masters, Xiaofeng Hu, Giovanna Scarel Jan 2011

Heat Recovery Mechanism In The Excitation Of Radiative Polaritons By Broadband Infrared Radiation In Thin Oxide Films, Anita J. Vincent-Johnson, Kyle A. Vasquez, John E. Bridstrup, Andrew E. Masters, Xiaofeng Hu, Giovanna Scarel

Department of Physics and Astronomy - Faculty Scholarship

This work probes radiative polaritons in thin oxide layers as a mean to capture and absorb broadband infrared radiation and transform it into heat. A heat recovery mechanism, based on the Seebeck effect, is used as the tool of the investigation. Heat production challenges the current understanding which views the excitation of radiative polaritons as only accompanied by the emission of electromagnetic radiation. The heat recovery mechanism presented here can inspire the design of infrared energy harvesting devices, similar to photovoltaic cells, and other devices to convert energy from a wide range of the electromagnetic radiation spectrum using thermoelectric power …