Open Access. Powered by Scholars. Published by Universities.®

Optics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Optics

Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado Nov 2018

Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado

Shared Knowledge Conference

Photonic crystals allow light to be controlled and manipulated such that novel photonic devices can be created. We are interested in using photonic crystals to increase the energy efficiency of our semiconductor whistle-geometry ring lasers. A photonic crystal will enable us to reduce the ring size, while maintaining confinement, thereby reducing its operating power. Photonic crystals can also exhibit slow light that will increase the interaction with the material. This will increase the gain, and therefore, lower the threshold for lasing to occur. Designing a photonic crystal for a particular application can be a challenge due to its number of …


Combined High-Speed Single Particle Tracking Of Membrane Proteins And Super-Resolution Of Membrane-Associated Structures, Hanieh Mazloom Farsibaf, Keith A. Lidke Nov 2018

Combined High-Speed Single Particle Tracking Of Membrane Proteins And Super-Resolution Of Membrane-Associated Structures, Hanieh Mazloom Farsibaf, Keith A. Lidke

Shared Knowledge Conference

Many experiments have shown that the diffusive motion of lipids and membrane proteins are slower on the cell surface than those in artificial lipid bilayers or blebs. One hypothesis that may partially explain this mystery is the effect of the cytoskeleton structures on the protein dynamics. A model proposed by Kusumi [1] is the Fence-Picket Model which describes the cell membrane as a set of compartment regions, each ~ 10 to 200 nm in size, created by direct or indirect interaction of lipids and proteins with actin filaments just below the membrane. To test this hypothesis, we have assembled a …


Charge Transfer Plasmon Resonances In Metallic Nanorod-Film Systems, Paul J. Gieri Nov 2018

Charge Transfer Plasmon Resonances In Metallic Nanorod-Film Systems, Paul J. Gieri

Shared Knowledge Conference

Understanding how the plasmonic response of colloidally grown metallic nanostructures changes when coupled to a metallic film is an important research problem with significant consequences for a number of applications such as sensing, solar energy harvesting, spectroscopy, and photochemistry, to name a few. In this work we investigate, both through experimental and theoretical approaches, the optical response of ligand coated gold nanorods and their interaction with gold films. We find that the scattering response of these systems is dominated by a charge transfer plasmon, in which charge flows between the particle and film. Additionally, we show that the characteristics of …


Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani Nov 2018

Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani

Shared Knowledge Conference

An interferometer or resonator is a device in which optical beams of specific frequencies circulate with minimal losses. These losses are completely compensated by the gain inside a laser resonator. A small perturbation introduced inside the laser can affect its frequency, which in turns becomes a metric of that perturbation. The perturbation is usually caused by an electric or magnetic field, rotation, acceleration, nonlinear index of refraction etc. Tiny changes of optical frequency are monitored by superimposing the laser field and a reference field (from the same laser) on a detector. This technique requires creating a laser in which two …