Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Physics

Smart Grid Control: Demand Side Management In Household Refrigerators As A Tool For Load Shifting, Anogh Utkalika Zaman, James Doyle May 2022

Smart Grid Control: Demand Side Management In Household Refrigerators As A Tool For Load Shifting, Anogh Utkalika Zaman, James Doyle

Macalester Journal of Physics and Astronomy

With improved supply of renewable sources of energy the focus has shifted away from simply producing clean energy to efficient consumption of energy. Until cheaper methods of energy storage are developed, Demand Side Management (DSM) is the best option for maximising energy efficiency. This paper proposes a method of turning regular refrigerators into smart demand response fridges. First, we develop an algorithm that accounts for small fluctuations in price and switches the device for optimal performance and lowered running cost. Then, we use longer price fluctuations to predict suitable times for pre-cooling and investigate the reduction in price as a …


Virtual Prototyping Of Liquid Lithium Divertor Concepts, Brennan Arnold May 2021

Virtual Prototyping Of Liquid Lithium Divertor Concepts, Brennan Arnold

Macalester Journal of Physics and Astronomy

A tokamak divertor must withstand power deposition in excess of 10 MW/m^2 in steady state and much higher in disruptions, enough to destroy nearly any material. In order to handle this extreme heat, there is some interest in using liquid metal flows to continually renew the divertor surface. In this paper, we examine an idea for a divertor with a porous surface that allows liquid lithium flowing through the divertor to percolate to the plasma facing surface. This idea is complicated by magnetohydrodynamic drag, where the stong magnetic fields in the tokamak cause the lithium to flow too slowly to …


Modeling Recombination In Solar Cells, Paul Chery Jun 2018

Modeling Recombination In Solar Cells, Paul Chery

Macalester Journal of Physics and Astronomy

Solar cells are a competitive alternative to nonrenewable energy sources such as fossil fuels. However, the efficiency of these devices is limited by photogenerated carrier recombination. We use a finite difference numerical model to study recombination phenomena in the absorber layer of solar cells including alternate recombination models and the effects of spatial distribution of recombination centers. We compare the effect of using the constant lifetime approximation for recombination to the full Shockley-Read-Hall expression in Silicon solar cells and find that the constant lifetime approximation holds for high defect densities but not for high photon flux densities. Finally, we simulate …


Time-Resolved Thz Conductivity Of An Intermediate Band Semiconductor, Elliot Weiss May 2017

Time-Resolved Thz Conductivity Of An Intermediate Band Semiconductor, Elliot Weiss

Macalester Journal of Physics and Astronomy

Intermediate band materials have promising applications as affordable, highly efficient solar materials. However, intermediate band solar cells exhibit low efficiency to date. Carrier recombination is a critical process that limits efficiency. If electrons relax to the valence band before they can be collected, their energy is lost. To help understand the recombination dynamics and physical properties of intermediate band semiconductors, we obtain time-resolved THz conductivity measurements of the intermediate band semiconductor, GaPAsN, at various temperatures. From our results, we build a model that provides insight to the recombination dynamics of GaPAsN.


Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas May 2016

Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas

Macalester Journal of Physics and Astronomy

ZnO thin films that function as either transparent conducting oxides in solid-state photovoltaic cells or as nanocrystalline dye-absorbers in dye-sensitized solar cells have the potential to reduce the cost of producing electricity from solar energy. Although there exist many methods to produce ZnO thin films, the most economical and practical method may be oxidation of metallic Zn thin films. This research examined the utility of ex-situ thermal oxidation of DC magnetron sputtered Zn thin films in generating useful ZnO thin films for these photovoltaic applications. We annealed Zn thin films in air at 570° C in order to produce ZnO …