Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Physics

Modeling Recombination In Solar Cells, Paul Chery Jun 2018

Modeling Recombination In Solar Cells, Paul Chery

Macalester Journal of Physics and Astronomy

Solar cells are a competitive alternative to nonrenewable energy sources such as fossil fuels. However, the efficiency of these devices is limited by photogenerated carrier recombination. We use a finite difference numerical model to study recombination phenomena in the absorber layer of solar cells including alternate recombination models and the effects of spatial distribution of recombination centers. We compare the effect of using the constant lifetime approximation for recombination to the full Shockley-Read-Hall expression in Silicon solar cells and find that the constant lifetime approximation holds for high defect densities but not for high photon flux densities. Finally, we simulate …


Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas May 2016

Zno Thin Films Generated By Ex-Situ Thermal Oxidation Of Metallic Zn For Photovoltaic Applications, Kovas Zygas

Macalester Journal of Physics and Astronomy

ZnO thin films that function as either transparent conducting oxides in solid-state photovoltaic cells or as nanocrystalline dye-absorbers in dye-sensitized solar cells have the potential to reduce the cost of producing electricity from solar energy. Although there exist many methods to produce ZnO thin films, the most economical and practical method may be oxidation of metallic Zn thin films. This research examined the utility of ex-situ thermal oxidation of DC magnetron sputtered Zn thin films in generating useful ZnO thin films for these photovoltaic applications. We annealed Zn thin films in air at 570° C in order to produce ZnO …