Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering Physics

Virtual Prototyping Of Liquid Lithium Divertor Concepts, Brennan Arnold May 2021

Virtual Prototyping Of Liquid Lithium Divertor Concepts, Brennan Arnold

Macalester Journal of Physics and Astronomy

A tokamak divertor must withstand power deposition in excess of 10 MW/m^2 in steady state and much higher in disruptions, enough to destroy nearly any material. In order to handle this extreme heat, there is some interest in using liquid metal flows to continually renew the divertor surface. In this paper, we examine an idea for a divertor with a porous surface that allows liquid lithium flowing through the divertor to percolate to the plasma facing surface. This idea is complicated by magnetohydrodynamic drag, where the stong magnetic fields in the tokamak cause the lithium to flow too slowly to …


Fuel Flow Reduction Impact Analysis Of Drag Reducing Film Applied To Aircraft Wings, Damon Resnick, Chris Donlan, Nimish Sakalle, Cody Pinkerman Jul 2018

Fuel Flow Reduction Impact Analysis Of Drag Reducing Film Applied To Aircraft Wings, Damon Resnick, Chris Donlan, Nimish Sakalle, Cody Pinkerman

SMU Data Science Review

In this paper, we present an analysis of flight data in order to determine whether the application of the Edge Aerodynamix Conformal Vortex Generator (CVG), applied to the wings of aircraft, reduces fuel flow during cruising conditions of flight. The CVG is a special treatment and film applied to the wings of an aircraft to protect the wings and reduce the non-laminar flow of air around the wings during flight. It is thought that by reducing the non-laminar flow or vortices around and directly behind the wings that an aircraft will move more smoothly through the air and provide a …


A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic Feb 2015

A Contribution Toward Better Understanding Of Overbanking Tendency In Fixed-Wing Aircraft, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

The phenomenon of overbanking tendency for a rigid-body, fixed-wing aircraft is investigated. Overbanking tendency is defined as a spontaneous, unbalanced rolling moment that keeps increasing an airplane’s bank angle in steep turns and must be arrested by opposite aileron action. As stated by the Federal Aviation Administration, the overbanking tendency may lead to a loss of control, especially in instrument meteorological conditions. It was found in this study that the speed differential over wing halves in horizontal turns indeed creates a rolling moment that achieves maximum values for bank angles between 45 and 55 degrees. However, this induced rolling moment …