Open Access. Powered by Scholars. Published by Universities.®

Quarks

College of Arts & Sciences Faculty Works

Discipline
Publication Year

Articles 1 - 7 of 7

Full-Text Articles in Elementary Particles and Fields and String Theory

Beyond Standard Model: Neutrino Dipoles And Proto Hydrogen Bundles., Polievkt Perov Mar 2024

Beyond Standard Model: Neutrino Dipoles And Proto Hydrogen Bundles., Polievkt Perov

College of Arts & Sciences Faculty Works

In our composite models of elementary particles as consisting of just two types of elementary basic charges, +e/3 and -e/3, the axial electric potential of any elementary particle is a function of a distance from the particle, and this function differs from the Coulomb potential of a point total charge of the particle. The electric potential of neutrinos is not zero at close distances from neutrinos. Neutrinos can form dipoles and bundles of 3 or more neutrinos. The three-neutrino bundle (a proto-hydrogen) can be converted to a hydrogen atom. As we suggested in our previous paper [4], the total numbers …


Beyond Standard Model: Electrostatic Potential Energy Of Quarks, Electron, And Neutrinos As Spinning Composite Structures, Polievkt Perov Mar 2024

Beyond Standard Model: Electrostatic Potential Energy Of Quarks, Electron, And Neutrinos As Spinning Composite Structures, Polievkt Perov

College of Arts & Sciences Faculty Works

The potential energy of any composite structure is related to the binding energy of the structure. The equations for the electrostatic potential energy of quarks, electron-like structures, and neutrinos are presented for our models of elementary particles as spinning composite structures. The structures consist of up to 3 basic elementary charges of magnitude e/3 on the axis of rotation and N charges revolving about the axis. We applied these general equations specifically to the models of different quarks, electron and electron-like particles (muon and tau), and neutral particles (neutrinos). It is shown that the electrostatic potential energies of all considered …


Beyond Standard Model: Axial Electric Potentials Of Quarks And Neutrinos, Polievkt Perov Feb 2024

Beyond Standard Model: Axial Electric Potentials Of Quarks And Neutrinos, Polievkt Perov

College of Arts & Sciences Faculty Works

The equations of axial electric potentials are presented for our models of quarks and neutrinos as spinning composite structures where up to 3 basic elementary charges are on the axis or rotation and the other N charges are revolving about the axis. The axial potential functions at given point on the axis of rotation were calculated as the sum of electric potentials at that point from all the charges in the structure. We applied these general equations specifically to the models of two types of neutral particles (neutrinos), one with 2 like charges on the axis and the other with …


Beyond Standard Model: Structure Factors Of Models Of Different Quarks And Neutrinos As Spinning Structures Made Of Basic Fractional Charges +- E/3, Polievkt Perov Jan 2024

Beyond Standard Model: Structure Factors Of Models Of Different Quarks And Neutrinos As Spinning Structures Made Of Basic Fractional Charges +- E/3, Polievkt Perov

College of Arts & Sciences Faculty Works

We consider a possible line of “elementary” particles as composite spinning structures made of just two basic elementary particles of charges + e/3 and -e/3. In considered structures, up to 3 basic charges can be on the axis of rotation and other charges can be in a revolving motion about the axis. In addition to the simplest structures of quarks, an electron and a neutral particle containing mostly one or no charges on the axis of rotation, suggested initially in [4], we analyze possible spatial structures of spinning composite particles having 2 or 3 charges on the axis of rotation. …


Beyond Standard Model: Electromagnetic Origin Of Strong Interaction Between Composite Structures Made Of Basic Elementary ±E/3 Charges, Polievkt Perov Dec 2023

Beyond Standard Model: Electromagnetic Origin Of Strong Interaction Between Composite Structures Made Of Basic Elementary ±E/3 Charges, Polievkt Perov

College of Arts & Sciences Faculty Works

Interaction between spinning composite structures of quarks is considered. In simple variants of the quark structures, one basic elementary particle of charge of magnitude |e|/3 is on the axis of rotation and several basic particles of an opposite sign are revolving in the circular orbit about the axis. Each charge in the structure contributes to the electric field and electric potential around the structure. But only revolving basic particles contribute to the spin and to the magnetic moment of the structure. Equations for the axial electric field and the electric potential of each structure at points on its axis are …


Fractional Charge Concept Opened Gates For New Ideas On Composition Of Matter, Polievkt Perov Jun 2023

Fractional Charge Concept Opened Gates For New Ideas On Composition Of Matter, Polievkt Perov

College of Arts & Sciences Faculty Works

Before the concept of quarks with fractional electric charges was introduced, the electron charge magnitude e was considered as the smallest amount of charge in nature so the charge of any object could be only an integer number of ± e. Then it was suggested that the proton and neutrons are composed of quarks with the fractional charges, combined in such a way that the total charge of a proton occurred to be that same known charge +e, and the charge of a neutron was zero. We suggest expanding that fruitful concept of fractional charges to build structural models of …


Electron And Other Quarks As Particles Made Of Elementary Particles Of Charge E/3 And Mass Me/6, Polievkt Perov May 2023

Electron And Other Quarks As Particles Made Of Elementary Particles Of Charge E/3 And Mass Me/6, Polievkt Perov

College of Arts & Sciences Faculty Works

We suggest that the first-generation quarks are not elementary particles, but structures made of a basic elementary particle of charge e/3 and its antiparticle, interacting via an electrostatic force. The structures are suggested for d-quark as consisting of one positive and two negative basic elementary charges, for u-quark as a structure with one negative and three positive basic charges, for an electron as a quark with one positive and four negative basic charges, and for one more quark made of one positive and one negative basic charge. All the suggested structures are in a spinning motion and are stable. The …