Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Elementary Particles and Fields and String Theory

A Measurement Of The Cross Section At √S = 8 Tev In Pp Collisions With The Cms Detector, Ekaterina Avdeeva Dec 2017

A Measurement Of The Wγ Cross Section At √S = 8 Tev In Pp Collisions With The Cms Detector, Ekaterina Avdeeva

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

A measurement of cross section of the Wγ → lνγ production in proton-proton collisions using 19.6 fb − 1 of LHC data collected by CMS detector at the center- √ of-mass collision energy of s = 8 TeV is reported. The W bosons are identified in their electron and muon decay modes. The process of Wγ production in the Standard Model (SM) involves a pure gauge boson coupling, a WWγ vertex, which allows one to test the electroweak sector of the SM in a unique way not achievable by studies of other processes. In addition to the total cross section, …


Doubly-Excited State Effects On Two-Photon Double Ionization Of Helium By Time-Delayed, Oppositely Circularly-Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, Anthony F. Starace Oct 2017

Doubly-Excited State Effects On Two-Photon Double Ionization Of Helium By Time-Delayed, Oppositely Circularly-Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, Anthony F. Starace

Anthony F. Starace Publications

We study two-photon double ionization (TPDI) of helium by a pair of time-delayed (non-overlapping), oppositely circularly-polarized attosecond pulses whose carrier frequencies are resonant with 1Po doubly-excited states. All of our TPDI results are obtained by numerical solution of the two-electron time-dependent Schrödinger equation for the six-dimensional case of circularly-polarized attosecond pulses, and they are analyzed using perturbation theory (PT). As compared with the corresponding nonresonant TPDI process, we find that the doubly-excited states change the character of vortex patterns in the two-electron momentum distributions for the case of back-to-back detection of the two ionized electrons in the polarization …


Imaging Electronic Motions By Ultrafast Electron Diffraction, Hua-Chieh Shao, Anthony F. Starace Oct 2017

Imaging Electronic Motions By Ultrafast Electron Diffraction, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

Recently ultrafast electron diffraction and microscopy have reached unprecedented temporal resolution, and transient structures with atomic precision have been observed in various reactions. It is anticipated that these extraordinary advances will soon allow direct observation of electronic motions during chemical reactions. We therefore performed a series of theoretical investigations and simulations to investigate the imaging of electronic motions in atoms and molecules by ultrafast electron diffraction. Three prototypical electronic motions were considered for hydrogen atoms. For the case of a breathing mode, the electron density expands and contracts periodically, and we show that the time-resolved scattering intensities reflect such changes …


Energy-Resolved Coherent Diffraction From Laser-Driven Electronic Motion In Atoms, Hua-Chieh Shao, Anthony F. Starace Oct 2017

Energy-Resolved Coherent Diffraction From Laser-Driven Electronic Motion In Atoms, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, …


Ionization Enhancement And Suppression By Phase-Locked Ultrafast Pulse Pairs, David B. Foote, Y. Lin, Liang-Wen Pi, Jean Marcel Ngoko Djiokap, Anthony F. Starace, W. T. Hill Aug 2017

Ionization Enhancement And Suppression By Phase-Locked Ultrafast Pulse Pairs, David B. Foote, Y. Lin, Liang-Wen Pi, Jean Marcel Ngoko Djiokap, Anthony F. Starace, W. T. Hill

Anthony F. Starace Publications

We present the results of a study of ionization of Xe atoms by a pair of phase-locked pulses, which is characterized by interference produced by the twin peaks. Two types of interference are considered: ordinary optical interference, which changes the intensity of the composite pulse and thus the ion yield, and a quantum interference, in which the excited electron wave packets interfere. We use the measured Xe+ yield as a function of the temporal delay and/or relative phase between the peaks to monitor the interferences and compare their relative strengths. We model the interference with a pulse intensity function and …


Adiabatic-Limit Coulomb Factors For Photoelectron And High-Order-Harmonic Spectra, M. V. Frolov, N. L. Manakov, A. A. Minina, S. V. Popruzhenko, Anthony F. Starace Aug 2017

Adiabatic-Limit Coulomb Factors For Photoelectron And High-Order-Harmonic Spectra, M. V. Frolov, N. L. Manakov, A. A. Minina, S. V. Popruzhenko, Anthony F. Starace

Anthony F. Starace Publications

A momentum-dependent Coulomb factor in the probability for nonlinear ionization of atoms by a strong low-frequency laser field is calculated analytically in the adiabatic approximation. Expressions for this Coulomb factor, valid for an arbitrary laser pulse waveform, are obtained and analyzed in detail for the cases of linear and circular polarizations. The dependence of the Coulomb factor on the photoelectron momentum is shown to be significant in both cases. Using a similar technique, the Coulomb factor for emission of high-order harmonics by an atom in a bichromatic laser field is also calculated. In contrast to the case of a single-frequency …


Kinematical Vortices In Double Photoionization Of Helium By Attosecond Pulses, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, Anthony F. Starace Jul 2017

Kinematical Vortices In Double Photoionization Of Helium By Attosecond Pulses, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, Anthony F. Starace

Anthony F. Starace Publications

Two-armed helical vortex structures are predicted in the two-electron momentum distributions produced in double photoionization (DPI) of the He atom by a pair of time-delayed elliptically polarized attosecond pulses with opposite helicities. These predictions are based upon both a first-order perturbation theory analysis and numerical solutions of the two-electron, time-dependent Schrödinger equation in six spatial dimensions. The helical vortex structures originate from Ramsey interference of a pair of ionized two-electron wave packets, each having a total angular momentum of unity, and appear in the sixfold differential DPI probability distribution for any energy partitioning between the two electrons. The vortex structures …


Discontinuities In The Electromagnetic Fields Of Vortex Beams In The Complex Source-Sink Model, Andrew Vikartofsky, Liang-Wen Pi, Anthony F. Starace May 2017

Discontinuities In The Electromagnetic Fields Of Vortex Beams In The Complex Source-Sink Model, Andrew Vikartofsky, Liang-Wen Pi, Anthony F. Starace

Anthony F. Starace Publications

An analytical discontinuity is reported in what was thought to be the discontinuity-free exact nonparaxial vortex beam phasor obtained within the complex source-sink model. This discontinuity appears for all odd values of the orbital angular momentum mode. Such discontinuities in the phasor lead to nonphysical discontinuities in the real electromagnetic field components. We identify the source of the discontinuities, and provide graphical evidence of the discontinuous real electric fields for the first and third orbital angular momentum modes. A simple means of avoiding these discontinuities is presented.


Enhancing High-Order-Harmonic Generation By Time Delays Between Two-Color, Few-Cycle Pulses, Dian Peng, Liang-Wen Pi, M. V. Frolov, Anthony F. Starace Mar 2017

Enhancing High-Order-Harmonic Generation By Time Delays Between Two-Color, Few-Cycle Pulses, Dian Peng, Liang-Wen Pi, M. V. Frolov, Anthony F. Starace

Anthony F. Starace Publications

Use of time delays in high-order-harmonic generation (HHG) driven by intense two-color, few-cycle pulses is investigated in order to determine means of optimizing HHG intensities and plateau cutoff energies. Based upon numerical solutions of the time-dependent Schrõdinger equation for the H atom as well as analytical analyses, we show that introducing a time delay between the two-color, few-cycle pulses can result in an enhancement of the intensity of the HHG spectrum by an order of magnitude (or more) at the cost of a reduction in the HHG plateau cutoff energy. Results for both positive and negative time delays as well …